\left\{ \begin{array} { l } { 6 x + 3 y = 60 } \\ { 2 x + 5 y = 800 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x = -\frac{175}{2} = -87\frac{1}{2} = -87.5
y=195
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
6x+3y=60,2x+5y=800
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
6x+3y=60
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
6x=-3y+60
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x=\frac{1}{6}\left(-3y+60\right)
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=-\frac{1}{2}y+10
-3y+60-ஐ \frac{1}{6} முறை பெருக்கவும்.
2\left(-\frac{1}{2}y+10\right)+5y=800
பிற சமன்பாடு 2x+5y=800-இல் x-க்கு -\frac{y}{2}+10-ஐப் பிரதியிடவும்.
-y+20+5y=800
-\frac{y}{2}+10-ஐ 2 முறை பெருக்கவும்.
4y+20=800
5y-க்கு -y-ஐக் கூட்டவும்.
4y=780
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 20-ஐக் கழிக்கவும்.
y=195
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=-\frac{1}{2}\times 195+10
x=-\frac{1}{2}y+10-இல் y-க்கு 195-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{195}{2}+10
195-ஐ -\frac{1}{2} முறை பெருக்கவும்.
x=-\frac{175}{2}
-\frac{195}{2}-க்கு 10-ஐக் கூட்டவும்.
x=-\frac{175}{2},y=195
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
6x+3y=60,2x+5y=800
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}6&3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\800\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}6&3\\2&5\end{matrix}\right))\left(\begin{matrix}6&3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\2&5\end{matrix}\right))\left(\begin{matrix}60\\800\end{matrix}\right)
\left(\begin{matrix}6&3\\2&5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\2&5\end{matrix}\right))\left(\begin{matrix}60\\800\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\2&5\end{matrix}\right))\left(\begin{matrix}60\\800\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-3\times 2}&-\frac{3}{6\times 5-3\times 2}\\-\frac{2}{6\times 5-3\times 2}&\frac{6}{6\times 5-3\times 2}\end{matrix}\right)\left(\begin{matrix}60\\800\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}&-\frac{1}{8}\\-\frac{1}{12}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}60\\800\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}\times 60-\frac{1}{8}\times 800\\-\frac{1}{12}\times 60+\frac{1}{4}\times 800\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{175}{2}\\195\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{175}{2},y=195
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
6x+3y=60,2x+5y=800
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2\times 6x+2\times 3y=2\times 60,6\times 2x+6\times 5y=6\times 800
6x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் பெருக்கவும்.
12x+6y=120,12x+30y=4800
எளிமையாக்கவும்.
12x-12x+6y-30y=120-4800
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 12x+6y=120-இலிருந்து 12x+30y=4800-ஐக் கழிக்கவும்.
6y-30y=120-4800
-12x-க்கு 12x-ஐக் கூட்டவும். விதிகள் 12x மற்றும் -12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-24y=120-4800
-30y-க்கு 6y-ஐக் கூட்டவும்.
-24y=-4680
-4800-க்கு 120-ஐக் கூட்டவும்.
y=195
இரு பக்கங்களையும் -24-ஆல் வகுக்கவும்.
2x+5\times 195=800
2x+5y=800-இல் y-க்கு 195-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x+975=800
195-ஐ 5 முறை பெருக்கவும்.
2x=-175
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 975-ஐக் கழிக்கவும்.
x=-\frac{175}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-\frac{175}{2},y=195
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}