பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
a, b-க்காகத் தீர்க்கவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2a+b+6=0,-4a+b+24=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2a+b+6=0
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் a-ஐத் தனிப்படுத்தி a-க்காக இதைத் தீர்க்கவும்.
2a+b=-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 6-ஐக் கழிக்கவும்.
2a=-b-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
a=\frac{1}{2}\left(-b-6\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
a=-\frac{1}{2}b-3
-b-6-ஐ \frac{1}{2} முறை பெருக்கவும்.
-4\left(-\frac{1}{2}b-3\right)+b+24=0
பிற சமன்பாடு -4a+b+24=0-இல் a-க்கு -\frac{b}{2}-3-ஐப் பிரதியிடவும்.
2b+12+b+24=0
-\frac{b}{2}-3-ஐ -4 முறை பெருக்கவும்.
3b+12+24=0
b-க்கு 2b-ஐக் கூட்டவும்.
3b+36=0
24-க்கு 12-ஐக் கூட்டவும்.
3b=-36
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 36-ஐக் கழிக்கவும்.
b=-12
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
a=-\frac{1}{2}\left(-12\right)-3
a=-\frac{1}{2}b-3-இல் b-க்கு -12-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
a=6-3
-12-ஐ -\frac{1}{2} முறை பெருக்கவும்.
a=3
6-க்கு -3-ஐக் கூட்டவும்.
a=3,b=-12
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2a+b+6=0,-4a+b+24=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&1\\-4&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-6\\-24\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}2&1\\-4&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}-6\\-24\end{matrix}\right)
\left(\begin{matrix}2&1\\-4&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}-6\\-24\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}-6\\-24\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-4\right)}&-\frac{1}{2-\left(-4\right)}\\-\frac{-4}{2-\left(-4\right)}&\frac{2}{2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-24\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-6\\-24\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-6\right)-\frac{1}{6}\left(-24\right)\\\frac{2}{3}\left(-6\right)+\frac{1}{3}\left(-24\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\-12\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
a=3,b=-12
அணிக் கூறுகள் a மற்றும் b-ஐப் பிரித்தெடுக்கவும்.
2a+b+6=0,-4a+b+24=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2a+4a+b-b+6-24=0
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2a+b+6=0-இலிருந்து -4a+b+24=0-ஐக் கழிக்கவும்.
2a+4a+6-24=0
-b-க்கு b-ஐக் கூட்டவும். விதிகள் b மற்றும் -b ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
6a+6-24=0
4a-க்கு 2a-ஐக் கூட்டவும்.
6a-18=0
-24-க்கு 6-ஐக் கூட்டவும்.
6a=18
சமன்பாட்டின் இரு பக்கங்களிலும் 18-ஐக் கூட்டவும்.
a=3
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
-4\times 3+b+24=0
-4a+b+24=0-இல் a-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக b-க்குத் தீர்க்கலாம்.
-12+b+24=0
3-ஐ -4 முறை பெருக்கவும்.
b+12=0
24-க்கு -12-ஐக் கூட்டவும்.
b=-12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 12-ஐக் கழிக்கவும்.
a=3,b=-12
இப்போது அமைப்பு சரிசெய்யப்பட்டது.