\left\{ \begin{array} { l } { 5 x - 6 y = 1 } \\ { 7 x - 4 y = - 5 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x = -\frac{17}{11} = -1\frac{6}{11} \approx -1.545454545
y = -\frac{16}{11} = -1\frac{5}{11} \approx -1.454545455
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
5x-6y=1,7x-4y=-5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-6y=1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=6y+1
சமன்பாட்டின் இரு பக்கங்களிலும் 6y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(6y+1\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{6}{5}y+\frac{1}{5}
6y+1-ஐ \frac{1}{5} முறை பெருக்கவும்.
7\left(\frac{6}{5}y+\frac{1}{5}\right)-4y=-5
பிற சமன்பாடு 7x-4y=-5-இல் x-க்கு \frac{6y+1}{5}-ஐப் பிரதியிடவும்.
\frac{42}{5}y+\frac{7}{5}-4y=-5
\frac{6y+1}{5}-ஐ 7 முறை பெருக்கவும்.
\frac{22}{5}y+\frac{7}{5}=-5
-4y-க்கு \frac{42y}{5}-ஐக் கூட்டவும்.
\frac{22}{5}y=-\frac{32}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{7}{5}-ஐக் கழிக்கவும்.
y=-\frac{16}{11}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{22}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{6}{5}\left(-\frac{16}{11}\right)+\frac{1}{5}
x=\frac{6}{5}y+\frac{1}{5}-இல் y-க்கு -\frac{16}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{96}{55}+\frac{1}{5}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{16}{11}-ஐ \frac{6}{5} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{17}{11}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{96}{55} உடன் \frac{1}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{17}{11},y=-\frac{16}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-6y=1,7x-4y=-5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-6\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-6\\7&-4\end{matrix}\right))\left(\begin{matrix}5&-6\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\7&-4\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
\left(\begin{matrix}5&-6\\7&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\7&-4\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\7&-4\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-\left(-6\times 7\right)}&-\frac{-6}{5\left(-4\right)-\left(-6\times 7\right)}\\-\frac{7}{5\left(-4\right)-\left(-6\times 7\right)}&\frac{5}{5\left(-4\right)-\left(-6\times 7\right)}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{3}{11}\\-\frac{7}{22}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}+\frac{3}{11}\left(-5\right)\\-\frac{7}{22}+\frac{5}{22}\left(-5\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{17}{11}\\-\frac{16}{11}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{17}{11},y=-\frac{16}{11}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-6y=1,7x-4y=-5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
7\times 5x+7\left(-6\right)y=7,5\times 7x+5\left(-4\right)y=5\left(-5\right)
5x மற்றும் 7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
35x-42y=7,35x-20y=-25
எளிமையாக்கவும்.
35x-35x-42y+20y=7+25
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 35x-42y=7-இலிருந்து 35x-20y=-25-ஐக் கழிக்கவும்.
-42y+20y=7+25
-35x-க்கு 35x-ஐக் கூட்டவும். விதிகள் 35x மற்றும் -35x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-22y=7+25
20y-க்கு -42y-ஐக் கூட்டவும்.
-22y=32
25-க்கு 7-ஐக் கூட்டவும்.
y=-\frac{16}{11}
இரு பக்கங்களையும் -22-ஆல் வகுக்கவும்.
7x-4\left(-\frac{16}{11}\right)=-5
7x-4y=-5-இல் y-க்கு -\frac{16}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
7x+\frac{64}{11}=-5
-\frac{16}{11}-ஐ -4 முறை பெருக்கவும்.
7x=-\frac{119}{11}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{64}{11}-ஐக் கழிக்கவும்.
x=-\frac{17}{11}
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=-\frac{17}{11},y=-\frac{16}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}