பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5x-6y=-3,5x-3y=3
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-6y=-3
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=6y-3
சமன்பாட்டின் இரு பக்கங்களிலும் 6y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(6y-3\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{6}{5}y-\frac{3}{5}
6y-3-ஐ \frac{1}{5} முறை பெருக்கவும்.
5\left(\frac{6}{5}y-\frac{3}{5}\right)-3y=3
பிற சமன்பாடு 5x-3y=3-இல் x-க்கு \frac{6y-3}{5}-ஐப் பிரதியிடவும்.
6y-3-3y=3
\frac{6y-3}{5}-ஐ 5 முறை பெருக்கவும்.
3y-3=3
-3y-க்கு 6y-ஐக் கூட்டவும்.
3y=6
சமன்பாட்டின் இரு பக்கங்களிலும் 3-ஐக் கூட்டவும்.
y=2
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{6}{5}\times 2-\frac{3}{5}
x=\frac{6}{5}y-\frac{3}{5}-இல் y-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{12-3}{5}
2-ஐ \frac{6}{5} முறை பெருக்கவும்.
x=\frac{9}{5}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{12}{5} உடன் -\frac{3}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{9}{5},y=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-6y=-3,5x-3y=3
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-6\times 5\right)}&-\frac{-6}{5\left(-3\right)-\left(-6\times 5\right)}\\-\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}&\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-3\right)+\frac{2}{5}\times 3\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\times 3\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{9}{5},y=2
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-6y=-3,5x-3y=3
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5x-5x-6y+3y=-3-3
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 5x-6y=-3-இலிருந்து 5x-3y=3-ஐக் கழிக்கவும்.
-6y+3y=-3-3
-5x-க்கு 5x-ஐக் கூட்டவும். விதிகள் 5x மற்றும் -5x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-3y=-3-3
3y-க்கு -6y-ஐக் கூட்டவும்.
-3y=-6
-3-க்கு -3-ஐக் கூட்டவும்.
y=2
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
5x-3\times 2=3
5x-3y=3-இல் y-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
5x-6=3
2-ஐ -3 முறை பெருக்கவும்.
5x=9
சமன்பாட்டின் இரு பக்கங்களிலும் 6-ஐக் கூட்டவும்.
x=\frac{9}{5}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{9}{5},y=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.