பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5x-3y=28,12x+4y=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-3y=28
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=3y+28
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(3y+28\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{3}{5}y+\frac{28}{5}
3y+28-ஐ \frac{1}{5} முறை பெருக்கவும்.
12\left(\frac{3}{5}y+\frac{28}{5}\right)+4y=0
பிற சமன்பாடு 12x+4y=0-இல் x-க்கு \frac{3y+28}{5}-ஐப் பிரதியிடவும்.
\frac{36}{5}y+\frac{336}{5}+4y=0
\frac{3y+28}{5}-ஐ 12 முறை பெருக்கவும்.
\frac{56}{5}y+\frac{336}{5}=0
4y-க்கு \frac{36y}{5}-ஐக் கூட்டவும்.
\frac{56}{5}y=-\frac{336}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{336}{5}-ஐக் கழிக்கவும்.
y=-6
சமன்பாட்டின் இரு பக்கங்களையும் \frac{56}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{3}{5}\left(-6\right)+\frac{28}{5}
x=\frac{3}{5}y+\frac{28}{5}-இல் y-க்கு -6-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-18+28}{5}
-6-ஐ \frac{3}{5} முறை பெருக்கவும்.
x=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{18}{5} உடன் \frac{28}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=2,y=-6
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-3y=28,12x+4y=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-3\\12&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\0\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}5&-3\\12&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
\left(\begin{matrix}5&-3\\12&4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-3\times 12\right)}&-\frac{-3}{5\times 4-\left(-3\times 12\right)}\\-\frac{12}{5\times 4-\left(-3\times 12\right)}&\frac{5}{5\times 4-\left(-3\times 12\right)}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{56}\\-\frac{3}{14}&\frac{5}{56}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 28\\-\frac{3}{14}\times 28\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=2,y=-6
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-3y=28,12x+4y=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
12\times 5x+12\left(-3\right)y=12\times 28,5\times 12x+5\times 4y=0
5x மற்றும் 12x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 12-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
60x-36y=336,60x+20y=0
எளிமையாக்கவும்.
60x-60x-36y-20y=336
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 60x-36y=336-இலிருந்து 60x+20y=0-ஐக் கழிக்கவும்.
-36y-20y=336
-60x-க்கு 60x-ஐக் கூட்டவும். விதிகள் 60x மற்றும் -60x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-56y=336
-20y-க்கு -36y-ஐக் கூட்டவும்.
y=-6
இரு பக்கங்களையும் -56-ஆல் வகுக்கவும்.
12x+4\left(-6\right)=0
12x+4y=0-இல் y-க்கு -6-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
12x-24=0
-6-ஐ 4 முறை பெருக்கவும்.
12x=24
சமன்பாட்டின் இரு பக்கங்களிலும் 24-ஐக் கூட்டவும்.
x=2
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
x=2,y=-6
இப்போது அமைப்பு சரிசெய்யப்பட்டது.