\left\{ \begin{array} { l } { 5 x + 6 y = 32 } \\ { 3 x - 2 y = - 20 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=-2
y=7
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
5x+6y=32,3x-2y=-20
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x+6y=32
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=-6y+32
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 6y-ஐக் கழிக்கவும்.
x=\frac{1}{5}\left(-6y+32\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=-\frac{6}{5}y+\frac{32}{5}
-6y+32-ஐ \frac{1}{5} முறை பெருக்கவும்.
3\left(-\frac{6}{5}y+\frac{32}{5}\right)-2y=-20
பிற சமன்பாடு 3x-2y=-20-இல் x-க்கு \frac{-6y+32}{5}-ஐப் பிரதியிடவும்.
-\frac{18}{5}y+\frac{96}{5}-2y=-20
\frac{-6y+32}{5}-ஐ 3 முறை பெருக்கவும்.
-\frac{28}{5}y+\frac{96}{5}=-20
-2y-க்கு -\frac{18y}{5}-ஐக் கூட்டவும்.
-\frac{28}{5}y=-\frac{196}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{96}{5}-ஐக் கழிக்கவும்.
y=7
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{28}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{6}{5}\times 7+\frac{32}{5}
x=-\frac{6}{5}y+\frac{32}{5}-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-42+32}{5}
7-ஐ -\frac{6}{5} முறை பெருக்கவும்.
x=-2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{42}{5} உடன் \frac{32}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-2,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x+6y=32,3x-2y=-20
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\-20\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-6\times 3}&-\frac{6}{5\left(-2\right)-6\times 3}\\-\frac{3}{5\left(-2\right)-6\times 3}&\frac{5}{5\left(-2\right)-6\times 3}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\\frac{3}{28}&-\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 32+\frac{3}{14}\left(-20\right)\\\frac{3}{28}\times 32-\frac{5}{28}\left(-20\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-2,y=7
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x+6y=32,3x-2y=-20
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3\times 5x+3\times 6y=3\times 32,5\times 3x+5\left(-2\right)y=5\left(-20\right)
5x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
15x+18y=96,15x-10y=-100
எளிமையாக்கவும்.
15x-15x+18y+10y=96+100
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 15x+18y=96-இலிருந்து 15x-10y=-100-ஐக் கழிக்கவும்.
18y+10y=96+100
-15x-க்கு 15x-ஐக் கூட்டவும். விதிகள் 15x மற்றும் -15x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
28y=96+100
10y-க்கு 18y-ஐக் கூட்டவும்.
28y=196
100-க்கு 96-ஐக் கூட்டவும்.
y=7
இரு பக்கங்களையும் 28-ஆல் வகுக்கவும்.
3x-2\times 7=-20
3x-2y=-20-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x-14=-20
7-ஐ -2 முறை பெருக்கவும்.
3x=-6
சமன்பாட்டின் இரு பக்கங்களிலும் 14-ஐக் கூட்டவும்.
x=-2
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-2,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}