பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x-y=10,3x+2y=8
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x-y=10
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=y+10
சமன்பாட்டின் இரு பக்கங்களிலும் y-ஐக் கூட்டவும்.
x=\frac{1}{4}\left(y+10\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{1}{4}y+\frac{5}{2}
y+10-ஐ \frac{1}{4} முறை பெருக்கவும்.
3\left(\frac{1}{4}y+\frac{5}{2}\right)+2y=8
பிற சமன்பாடு 3x+2y=8-இல் x-க்கு \frac{y}{4}+\frac{5}{2}-ஐப் பிரதியிடவும்.
\frac{3}{4}y+\frac{15}{2}+2y=8
\frac{y}{4}+\frac{5}{2}-ஐ 3 முறை பெருக்கவும்.
\frac{11}{4}y+\frac{15}{2}=8
2y-க்கு \frac{3y}{4}-ஐக் கூட்டவும்.
\frac{11}{4}y=\frac{1}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{15}{2}-ஐக் கழிக்கவும்.
y=\frac{2}{11}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{11}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{1}{4}\times \frac{2}{11}+\frac{5}{2}
x=\frac{1}{4}y+\frac{5}{2}-இல் y-க்கு \frac{2}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{1}{22}+\frac{5}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{2}{11}-ஐ \frac{1}{4} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{28}{11}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{22} உடன் \frac{5}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{28}{11},y=\frac{2}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x-y=10,3x+2y=8
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\8\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}4&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
\left(\begin{matrix}4&-1\\3&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\right)}&-\frac{-1}{4\times 2-\left(-3\right)}\\-\frac{3}{4\times 2-\left(-3\right)}&\frac{4}{4\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{11}\\-\frac{3}{11}&\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 10+\frac{1}{11}\times 8\\-\frac{3}{11}\times 10+\frac{4}{11}\times 8\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{11}\\\frac{2}{11}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{28}{11},y=\frac{2}{11}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x-y=10,3x+2y=8
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3\times 4x+3\left(-1\right)y=3\times 10,4\times 3x+4\times 2y=4\times 8
4x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
12x-3y=30,12x+8y=32
எளிமையாக்கவும்.
12x-12x-3y-8y=30-32
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 12x-3y=30-இலிருந்து 12x+8y=32-ஐக் கழிக்கவும்.
-3y-8y=30-32
-12x-க்கு 12x-ஐக் கூட்டவும். விதிகள் 12x மற்றும் -12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-11y=30-32
-8y-க்கு -3y-ஐக் கூட்டவும்.
-11y=-2
-32-க்கு 30-ஐக் கூட்டவும்.
y=\frac{2}{11}
இரு பக்கங்களையும் -11-ஆல் வகுக்கவும்.
3x+2\times \frac{2}{11}=8
3x+2y=8-இல் y-க்கு \frac{2}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x+\frac{4}{11}=8
\frac{2}{11}-ஐ 2 முறை பெருக்கவும்.
3x=\frac{84}{11}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{4}{11}-ஐக் கழிக்கவும்.
x=\frac{28}{11}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{28}{11},y=\frac{2}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.