பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x-5y=9,7x-4y=15
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x-5y=9
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=5y+9
சமன்பாட்டின் இரு பக்கங்களிலும் 5y-ஐக் கூட்டவும்.
x=\frac{1}{4}\left(5y+9\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{5}{4}y+\frac{9}{4}
5y+9-ஐ \frac{1}{4} முறை பெருக்கவும்.
7\left(\frac{5}{4}y+\frac{9}{4}\right)-4y=15
பிற சமன்பாடு 7x-4y=15-இல் x-க்கு \frac{5y+9}{4}-ஐப் பிரதியிடவும்.
\frac{35}{4}y+\frac{63}{4}-4y=15
\frac{5y+9}{4}-ஐ 7 முறை பெருக்கவும்.
\frac{19}{4}y+\frac{63}{4}=15
-4y-க்கு \frac{35y}{4}-ஐக் கூட்டவும்.
\frac{19}{4}y=-\frac{3}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{63}{4}-ஐக் கழிக்கவும்.
y=-\frac{3}{19}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{19}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{5}{4}\left(-\frac{3}{19}\right)+\frac{9}{4}
x=\frac{5}{4}y+\frac{9}{4}-இல் y-க்கு -\frac{3}{19}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{15}{76}+\frac{9}{4}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{3}{19}-ஐ \frac{5}{4} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{39}{19}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{15}{76} உடன் \frac{9}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{39}{19},y=-\frac{3}{19}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x-5y=9,7x-4y=15
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\15\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-\left(-5\times 7\right)}&-\frac{-5}{4\left(-4\right)-\left(-5\times 7\right)}\\-\frac{7}{4\left(-4\right)-\left(-5\times 7\right)}&\frac{4}{4\left(-4\right)-\left(-5\times 7\right)}\end{matrix}\right)\left(\begin{matrix}9\\15\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}&\frac{5}{19}\\-\frac{7}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}9\\15\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}\times 9+\frac{5}{19}\times 15\\-\frac{7}{19}\times 9+\frac{4}{19}\times 15\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{39}{19}\\-\frac{3}{19}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{39}{19},y=-\frac{3}{19}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x-5y=9,7x-4y=15
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
7\times 4x+7\left(-5\right)y=7\times 9,4\times 7x+4\left(-4\right)y=4\times 15
4x மற்றும் 7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
28x-35y=63,28x-16y=60
எளிமையாக்கவும்.
28x-28x-35y+16y=63-60
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 28x-35y=63-இலிருந்து 28x-16y=60-ஐக் கழிக்கவும்.
-35y+16y=63-60
-28x-க்கு 28x-ஐக் கூட்டவும். விதிகள் 28x மற்றும் -28x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-19y=63-60
16y-க்கு -35y-ஐக் கூட்டவும்.
-19y=3
-60-க்கு 63-ஐக் கூட்டவும்.
y=-\frac{3}{19}
இரு பக்கங்களையும் -19-ஆல் வகுக்கவும்.
7x-4\left(-\frac{3}{19}\right)=15
7x-4y=15-இல் y-க்கு -\frac{3}{19}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
7x+\frac{12}{19}=15
-\frac{3}{19}-ஐ -4 முறை பெருக்கவும்.
7x=\frac{273}{19}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{12}{19}-ஐக் கழிக்கவும்.
x=\frac{39}{19}
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=\frac{39}{19},y=-\frac{3}{19}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.