பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x+3y=12.5,3x+3y=10.5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x+3y=12.5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=-3y+12.5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x=\frac{1}{4}\left(-3y+12.5\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=-\frac{3}{4}y+\frac{25}{8}
-3y+12.5-ஐ \frac{1}{4} முறை பெருக்கவும்.
3\left(-\frac{3}{4}y+\frac{25}{8}\right)+3y=10.5
பிற சமன்பாடு 3x+3y=10.5-இல் x-க்கு -\frac{3y}{4}+\frac{25}{8}-ஐப் பிரதியிடவும்.
-\frac{9}{4}y+\frac{75}{8}+3y=10.5
-\frac{3y}{4}+\frac{25}{8}-ஐ 3 முறை பெருக்கவும்.
\frac{3}{4}y+\frac{75}{8}=10.5
3y-க்கு -\frac{9y}{4}-ஐக் கூட்டவும்.
\frac{3}{4}y=\frac{9}{8}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{75}{8}-ஐக் கழிக்கவும்.
y=\frac{3}{2}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{3}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{3}{4}\times \frac{3}{2}+\frac{25}{8}
x=-\frac{3}{4}y+\frac{25}{8}-இல் y-க்கு \frac{3}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-9+25}{8}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{3}{2}-ஐ -\frac{3}{4} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{9}{8} உடன் \frac{25}{8}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=2,y=\frac{3}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x+3y=12.5,3x+3y=10.5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
\left(\begin{matrix}4&3\\3&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3\times 3}&-\frac{3}{4\times 3-3\times 3}\\-\frac{3}{4\times 3-3\times 3}&\frac{4}{4\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}12.5\\10.5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12.5-10.5\\-12.5+\frac{4}{3}\times 10.5\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1.5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=2,y=1.5
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x+3y=12.5,3x+3y=10.5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4x-3x+3y-3y=\frac{25-21}{2}
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 4x+3y=12.5-இலிருந்து 3x+3y=10.5-ஐக் கழிக்கவும்.
4x-3x=\frac{25-21}{2}
-3y-க்கு 3y-ஐக் கூட்டவும். விதிகள் 3y மற்றும் -3y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
x=\frac{25-21}{2}
-3x-க்கு 4x-ஐக் கூட்டவும்.
x=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -10.5 உடன் 12.5-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
3\times 2+3y=10.5
3x+3y=10.5-இல் x-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
6+3y=10.5
2-ஐ 3 முறை பெருக்கவும்.
3y=4.5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 6-ஐக் கழிக்கவும்.
y=1.5
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=2,y=1.5
இப்போது அமைப்பு சரிசெய்யப்பட்டது.