பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y, x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3y-4x=8
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 4x-ஐக் கழிக்கவும்.
3y-4x=8,2y-8x=7
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3y-4x=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
3y=4x+8
சமன்பாட்டின் இரு பக்கங்களிலும் 4x-ஐக் கூட்டவும்.
y=\frac{1}{3}\left(4x+8\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
y=\frac{4}{3}x+\frac{8}{3}
8+4x-ஐ \frac{1}{3} முறை பெருக்கவும்.
2\left(\frac{4}{3}x+\frac{8}{3}\right)-8x=7
பிற சமன்பாடு 2y-8x=7-இல் y-க்கு \frac{8+4x}{3}-ஐப் பிரதியிடவும்.
\frac{8}{3}x+\frac{16}{3}-8x=7
\frac{8+4x}{3}-ஐ 2 முறை பெருக்கவும்.
-\frac{16}{3}x+\frac{16}{3}=7
-8x-க்கு \frac{8x}{3}-ஐக் கூட்டவும்.
-\frac{16}{3}x=\frac{5}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{16}{3}-ஐக் கழிக்கவும்.
x=-\frac{5}{16}
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{16}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
y=\frac{4}{3}\left(-\frac{5}{16}\right)+\frac{8}{3}
y=\frac{4}{3}x+\frac{8}{3}-இல் x-க்கு -\frac{5}{16}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=-\frac{5}{12}+\frac{8}{3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{5}{16}-ஐ \frac{4}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=\frac{9}{4}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{5}{12} உடன் \frac{8}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=\frac{9}{4},x=-\frac{5}{16}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3y-4x=8
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 4x-ஐக் கழிக்கவும்.
3y-4x=8,2y-8x=7
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-4\\2&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\7\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-4\\2&-8\end{matrix}\right))\left(\begin{matrix}3&-4\\2&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&-8\end{matrix}\right))\left(\begin{matrix}8\\7\end{matrix}\right)
\left(\begin{matrix}3&-4\\2&-8\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&-8\end{matrix}\right))\left(\begin{matrix}8\\7\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&-8\end{matrix}\right))\left(\begin{matrix}8\\7\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-\left(-4\times 2\right)}&-\frac{-4}{3\left(-8\right)-\left(-4\times 2\right)}\\-\frac{2}{3\left(-8\right)-\left(-4\times 2\right)}&\frac{3}{3\left(-8\right)-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}8\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{4}\\\frac{1}{8}&-\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}8\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 8-\frac{1}{4}\times 7\\\frac{1}{8}\times 8-\frac{3}{16}\times 7\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\\-\frac{5}{16}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=\frac{9}{4},x=-\frac{5}{16}
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
3y-4x=8
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 4x-ஐக் கழிக்கவும்.
3y-4x=8,2y-8x=7
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2\times 3y+2\left(-4\right)x=2\times 8,3\times 2y+3\left(-8\right)x=3\times 7
3y மற்றும் 2y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
6y-8x=16,6y-24x=21
எளிமையாக்கவும்.
6y-6y-8x+24x=16-21
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 6y-8x=16-இலிருந்து 6y-24x=21-ஐக் கழிக்கவும்.
-8x+24x=16-21
-6y-க்கு 6y-ஐக் கூட்டவும். விதிகள் 6y மற்றும் -6y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
16x=16-21
24x-க்கு -8x-ஐக் கூட்டவும்.
16x=-5
-21-க்கு 16-ஐக் கூட்டவும்.
x=-\frac{5}{16}
இரு பக்கங்களையும் 16-ஆல் வகுக்கவும்.
2y-8\left(-\frac{5}{16}\right)=7
2y-8x=7-இல் x-க்கு -\frac{5}{16}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
2y+\frac{5}{2}=7
-\frac{5}{16}-ஐ -8 முறை பெருக்கவும்.
2y=\frac{9}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{2}-ஐக் கழிக்கவும்.
y=\frac{9}{4}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
y=\frac{9}{4},x=-\frac{5}{16}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.