பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x-y=6,2x+\frac{1}{3}y=8
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x-y=6
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=y+6
சமன்பாட்டின் இரு பக்கங்களிலும் y-ஐக் கூட்டவும்.
x=\frac{1}{3}\left(y+6\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{1}{3}y+2
y+6-ஐ \frac{1}{3} முறை பெருக்கவும்.
2\left(\frac{1}{3}y+2\right)+\frac{1}{3}y=8
பிற சமன்பாடு 2x+\frac{1}{3}y=8-இல் x-க்கு \frac{y}{3}+2-ஐப் பிரதியிடவும்.
\frac{2}{3}y+4+\frac{1}{3}y=8
\frac{y}{3}+2-ஐ 2 முறை பெருக்கவும்.
y+4=8
\frac{y}{3}-க்கு \frac{2y}{3}-ஐக் கூட்டவும்.
y=4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
x=\frac{1}{3}\times 4+2
x=\frac{1}{3}y+2-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{4}{3}+2
4-ஐ \frac{1}{3} முறை பெருக்கவும்.
x=\frac{10}{3}
\frac{4}{3}-க்கு 2-ஐக் கூட்டவும்.
x=\frac{10}{3},y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x-y=6,2x+\frac{1}{3}y=8
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{3\times \frac{1}{3}-\left(-2\right)}&-\frac{-1}{3\times \frac{1}{3}-\left(-2\right)}\\-\frac{2}{3\times \frac{1}{3}-\left(-2\right)}&\frac{3}{3\times \frac{1}{3}-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{3}\\-\frac{2}{3}&1\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 6+\frac{1}{3}\times 8\\-\frac{2}{3}\times 6+8\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{3}\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{10}{3},y=4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x-y=6,2x+\frac{1}{3}y=8
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2\times 3x+2\left(-1\right)y=2\times 6,3\times 2x+3\times \frac{1}{3}y=3\times 8
3x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
6x-2y=12,6x+y=24
எளிமையாக்கவும்.
6x-6x-2y-y=12-24
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 6x-2y=12-இலிருந்து 6x+y=24-ஐக் கழிக்கவும்.
-2y-y=12-24
-6x-க்கு 6x-ஐக் கூட்டவும். விதிகள் 6x மற்றும் -6x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-3y=12-24
-y-க்கு -2y-ஐக் கூட்டவும்.
-3y=-12
-24-க்கு 12-ஐக் கூட்டவும்.
y=4
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
2x+\frac{1}{3}\times 4=8
2x+\frac{1}{3}y=8-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x+\frac{4}{3}=8
4-ஐ \frac{1}{3} முறை பெருக்கவும்.
2x=\frac{20}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{4}{3}-ஐக் கழிக்கவும்.
x=\frac{10}{3}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=\frac{10}{3},y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.