பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x-7y=24,6x+3y=99
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x-7y=24
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=7y+24
சமன்பாட்டின் இரு பக்கங்களிலும் 7y-ஐக் கூட்டவும்.
x=\frac{1}{3}\left(7y+24\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{7}{3}y+8
7y+24-ஐ \frac{1}{3} முறை பெருக்கவும்.
6\left(\frac{7}{3}y+8\right)+3y=99
பிற சமன்பாடு 6x+3y=99-இல் x-க்கு \frac{7y}{3}+8-ஐப் பிரதியிடவும்.
14y+48+3y=99
\frac{7y}{3}+8-ஐ 6 முறை பெருக்கவும்.
17y+48=99
3y-க்கு 14y-ஐக் கூட்டவும்.
17y=51
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 48-ஐக் கழிக்கவும்.
y=3
இரு பக்கங்களையும் 17-ஆல் வகுக்கவும்.
x=\frac{7}{3}\times 3+8
x=\frac{7}{3}y+8-இல் y-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=7+8
3-ஐ \frac{7}{3} முறை பெருக்கவும்.
x=15
7-க்கு 8-ஐக் கூட்டவும்.
x=15,y=3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x-7y=24,6x+3y=99
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-7\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\99\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}3&-7\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}24\\99\end{matrix}\right)
\left(\begin{matrix}3&-7\\6&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}24\\99\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}24\\99\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-7\times 6\right)}&-\frac{-7}{3\times 3-\left(-7\times 6\right)}\\-\frac{6}{3\times 3-\left(-7\times 6\right)}&\frac{3}{3\times 3-\left(-7\times 6\right)}\end{matrix}\right)\left(\begin{matrix}24\\99\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{7}{51}\\-\frac{2}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}24\\99\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 24+\frac{7}{51}\times 99\\-\frac{2}{17}\times 24+\frac{1}{17}\times 99\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=15,y=3
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x-7y=24,6x+3y=99
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
6\times 3x+6\left(-7\right)y=6\times 24,3\times 6x+3\times 3y=3\times 99
3x மற்றும் 6x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
18x-42y=144,18x+9y=297
எளிமையாக்கவும்.
18x-18x-42y-9y=144-297
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 18x-42y=144-இலிருந்து 18x+9y=297-ஐக் கழிக்கவும்.
-42y-9y=144-297
-18x-க்கு 18x-ஐக் கூட்டவும். விதிகள் 18x மற்றும் -18x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-51y=144-297
-9y-க்கு -42y-ஐக் கூட்டவும்.
-51y=-153
-297-க்கு 144-ஐக் கூட்டவும்.
y=3
இரு பக்கங்களையும் -51-ஆல் வகுக்கவும்.
6x+3\times 3=99
6x+3y=99-இல் y-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
6x+9=99
3-ஐ 3 முறை பெருக்கவும்.
6x=90
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 9-ஐக் கழிக்கவும்.
x=15
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=15,y=3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.