பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x-7y=0,2x-5y=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x-7y=0
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=7y
சமன்பாட்டின் இரு பக்கங்களிலும் 7y-ஐக் கூட்டவும்.
x=\frac{1}{3}\times 7y
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{7}{3}y
7y-ஐ \frac{1}{3} முறை பெருக்கவும்.
2\times \frac{7}{3}y-5y=0
பிற சமன்பாடு 2x-5y=0-இல் x-க்கு \frac{7y}{3}-ஐப் பிரதியிடவும்.
\frac{14}{3}y-5y=0
\frac{7y}{3}-ஐ 2 முறை பெருக்கவும்.
-\frac{1}{3}y=0
-5y-க்கு \frac{14y}{3}-ஐக் கூட்டவும்.
y=0
இரு பக்கங்களையும் -3-ஆல் பெருக்கவும்.
x=0
x=\frac{7}{3}y-இல் y-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=0,y=0
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x-7y=0,2x-5y=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&-7\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&-7\\2&-5\end{matrix}\right))\left(\begin{matrix}3&-7\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}3&-7\\2&-5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-\left(-7\times 2\right)}&-\frac{-7}{3\left(-5\right)-\left(-7\times 2\right)}\\-\frac{2}{3\left(-5\right)-\left(-7\times 2\right)}&\frac{3}{3\left(-5\right)-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-7\\2&-3\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
x=0,y=0
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x-7y=0,2x-5y=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2\times 3x+2\left(-7\right)y=0,3\times 2x+3\left(-5\right)y=0
3x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
6x-14y=0,6x-15y=0
எளிமையாக்கவும்.
6x-6x-14y+15y=0
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 6x-14y=0-இலிருந்து 6x-15y=0-ஐக் கழிக்கவும்.
-14y+15y=0
-6x-க்கு 6x-ஐக் கூட்டவும். விதிகள் 6x மற்றும் -6x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
y=0
15y-க்கு -14y-ஐக் கூட்டவும்.
2x=0
2x-5y=0-இல் y-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=0
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=0,y=0
இப்போது அமைப்பு சரிசெய்யப்பட்டது.