பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x+2y=16k,5x-4y=-10k
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x+2y=16k
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=-2y+16k
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
x=\frac{1}{3}\left(-2y+16k\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-\frac{2}{3}y+\frac{16k}{3}
-2y+16k-ஐ \frac{1}{3} முறை பெருக்கவும்.
5\left(-\frac{2}{3}y+\frac{16k}{3}\right)-4y=-10k
பிற சமன்பாடு 5x-4y=-10k-இல் x-க்கு \frac{-2y+16k}{3}-ஐப் பிரதியிடவும்.
-\frac{10}{3}y+\frac{80k}{3}-4y=-10k
\frac{-2y+16k}{3}-ஐ 5 முறை பெருக்கவும்.
-\frac{22}{3}y+\frac{80k}{3}=-10k
-4y-க்கு -\frac{10y}{3}-ஐக் கூட்டவும்.
-\frac{22}{3}y=-\frac{110k}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{80k}{3}-ஐக் கழிக்கவும்.
y=5k
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{22}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{2}{3}\times 5k+\frac{16k}{3}
x=-\frac{2}{3}y+\frac{16k}{3}-இல் y-க்கு 5k-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-10k+16k}{3}
5k-ஐ -\frac{2}{3} முறை பெருக்கவும்.
x=2k
-\frac{10k}{3}-க்கு \frac{16k}{3}-ஐக் கூட்டவும்.
x=2k,y=5k
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x+2y=16k,5x-4y=-10k
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16k\\-10k\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}16k\\-10k\end{matrix}\right)
\left(\begin{matrix}3&2\\5&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}16k\\-10k\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&-4\end{matrix}\right))\left(\begin{matrix}16k\\-10k\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-2\times 5}&-\frac{2}{3\left(-4\right)-2\times 5}\\-\frac{5}{3\left(-4\right)-2\times 5}&\frac{3}{3\left(-4\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}16k\\-10k\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{11}\\\frac{5}{22}&-\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}16k\\-10k\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 16k+\frac{1}{11}\left(-10k\right)\\\frac{5}{22}\times 16k-\frac{3}{22}\left(-10k\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2k\\5k\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=2k,y=5k
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x+2y=16k,5x-4y=-10k
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5\times 3x+5\times 2y=5\times 16k,3\times 5x+3\left(-4\right)y=3\left(-10k\right)
3x மற்றும் 5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
15x+10y=80k,15x-12y=-30k
எளிமையாக்கவும்.
15x-15x+10y+12y=80k+30k
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 15x+10y=80k-இலிருந்து 15x-12y=-30k-ஐக் கழிக்கவும்.
10y+12y=80k+30k
-15x-க்கு 15x-ஐக் கூட்டவும். விதிகள் 15x மற்றும் -15x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
22y=80k+30k
12y-க்கு 10y-ஐக் கூட்டவும்.
22y=110k
30k-க்கு 80k-ஐக் கூட்டவும்.
y=5k
இரு பக்கங்களையும் 22-ஆல் வகுக்கவும்.
5x-4\times 5k=-10k
5x-4y=-10k-இல் y-க்கு 5k-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
5x-20k=-10k
5k-ஐ -4 முறை பெருக்கவும்.
5x=10k
சமன்பாட்டின் இரு பக்கங்களிலும் 20k-ஐக் கூட்டவும்.
x=2k
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=2k,y=5k
இப்போது அமைப்பு சரிசெய்யப்பட்டது.