பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

21x+7y=42,-5x+5y=10
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
21x+7y=42
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
21x=-7y+42
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 7y-ஐக் கழிக்கவும்.
x=\frac{1}{21}\left(-7y+42\right)
இரு பக்கங்களையும் 21-ஆல் வகுக்கவும்.
x=-\frac{1}{3}y+2
-7y+42-ஐ \frac{1}{21} முறை பெருக்கவும்.
-5\left(-\frac{1}{3}y+2\right)+5y=10
பிற சமன்பாடு -5x+5y=10-இல் x-க்கு -\frac{y}{3}+2-ஐப் பிரதியிடவும்.
\frac{5}{3}y-10+5y=10
-\frac{y}{3}+2-ஐ -5 முறை பெருக்கவும்.
\frac{20}{3}y-10=10
5y-க்கு \frac{5y}{3}-ஐக் கூட்டவும்.
\frac{20}{3}y=20
சமன்பாட்டின் இரு பக்கங்களிலும் 10-ஐக் கூட்டவும்.
y=3
சமன்பாட்டின் இரு பக்கங்களையும் \frac{20}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{1}{3}\times 3+2
x=-\frac{1}{3}y+2-இல் y-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-1+2
3-ஐ -\frac{1}{3} முறை பெருக்கவும்.
x=1
-1-க்கு 2-ஐக் கூட்டவும்.
x=1,y=3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
21x+7y=42,-5x+5y=10
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42\\10\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21\times 5-7\left(-5\right)}&-\frac{7}{21\times 5-7\left(-5\right)}\\-\frac{-5}{21\times 5-7\left(-5\right)}&\frac{21}{21\times 5-7\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}42\\10\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{28}&-\frac{1}{20}\\\frac{1}{28}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}42\\10\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{28}\times 42-\frac{1}{20}\times 10\\\frac{1}{28}\times 42+\frac{3}{20}\times 10\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=3
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
21x+7y=42,-5x+5y=10
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-5\times 21x-5\times 7y=-5\times 42,21\left(-5\right)x+21\times 5y=21\times 10
21x மற்றும் -5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 21-ஆலும் பெருக்கவும்.
-105x-35y=-210,-105x+105y=210
எளிமையாக்கவும்.
-105x+105x-35y-105y=-210-210
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -105x-35y=-210-இலிருந்து -105x+105y=210-ஐக் கழிக்கவும்.
-35y-105y=-210-210
105x-க்கு -105x-ஐக் கூட்டவும். விதிகள் -105x மற்றும் 105x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-140y=-210-210
-105y-க்கு -35y-ஐக் கூட்டவும்.
-140y=-420
-210-க்கு -210-ஐக் கூட்டவும்.
y=3
இரு பக்கங்களையும் -140-ஆல் வகுக்கவும்.
-5x+5\times 3=10
-5x+5y=10-இல் y-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-5x+15=10
3-ஐ 5 முறை பெருக்கவும்.
-5x=-5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 15-ஐக் கழிக்கவும்.
x=1
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
x=1,y=3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.