பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x-5y=7,4x+3y=1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x-5y=7
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=5y+7
சமன்பாட்டின் இரு பக்கங்களிலும் 5y-ஐக் கூட்டவும்.
x=\frac{1}{2}\left(5y+7\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=\frac{5}{2}y+\frac{7}{2}
5y+7-ஐ \frac{1}{2} முறை பெருக்கவும்.
4\left(\frac{5}{2}y+\frac{7}{2}\right)+3y=1
பிற சமன்பாடு 4x+3y=1-இல் x-க்கு \frac{5y+7}{2}-ஐப் பிரதியிடவும்.
10y+14+3y=1
\frac{5y+7}{2}-ஐ 4 முறை பெருக்கவும்.
13y+14=1
3y-க்கு 10y-ஐக் கூட்டவும்.
13y=-13
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 14-ஐக் கழிக்கவும்.
y=-1
இரு பக்கங்களையும் 13-ஆல் வகுக்கவும்.
x=\frac{5}{2}\left(-1\right)+\frac{7}{2}
x=\frac{5}{2}y+\frac{7}{2}-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-5+7}{2}
-1-ஐ \frac{5}{2} முறை பெருக்கவும்.
x=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{5}{2} உடன் \frac{7}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=1,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x-5y=7,4x+3y=1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}2&-5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
\left(\begin{matrix}2&-5\\4&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-5\times 4\right)}&-\frac{-5}{2\times 3-\left(-5\times 4\right)}\\-\frac{4}{2\times 3-\left(-5\times 4\right)}&\frac{2}{2\times 3-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}&\frac{5}{26}\\-\frac{2}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}\times 7+\frac{5}{26}\\-\frac{2}{13}\times 7+\frac{1}{13}\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=-1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x-5y=7,4x+3y=1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 2x+4\left(-5\right)y=4\times 7,2\times 4x+2\times 3y=2
2x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
8x-20y=28,8x+6y=2
எளிமையாக்கவும்.
8x-8x-20y-6y=28-2
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 8x-20y=28-இலிருந்து 8x+6y=2-ஐக் கழிக்கவும்.
-20y-6y=28-2
-8x-க்கு 8x-ஐக் கூட்டவும். விதிகள் 8x மற்றும் -8x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-26y=28-2
-6y-க்கு -20y-ஐக் கூட்டவும்.
-26y=26
-2-க்கு 28-ஐக் கூட்டவும்.
y=-1
இரு பக்கங்களையும் -26-ஆல் வகுக்கவும்.
4x+3\left(-1\right)=1
4x+3y=1-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x-3=1
-1-ஐ 3 முறை பெருக்கவும்.
4x=4
சமன்பாட்டின் இரு பக்கங்களிலும் 3-ஐக் கூட்டவும்.
x=1
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=1,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.