பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x+y=2-3m,x+2y=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+y=2-3m
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-y+2-3m
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-y+2-3m\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-\frac{1}{2}y-\frac{3m}{2}+1
-y-3m+2-ஐ \frac{1}{2} முறை பெருக்கவும்.
-\frac{1}{2}y-\frac{3m}{2}+1+2y=4
பிற சமன்பாடு x+2y=4-இல் x-க்கு -\frac{y}{2}-\frac{3m}{2}+1-ஐப் பிரதியிடவும்.
\frac{3}{2}y-\frac{3m}{2}+1=4
2y-க்கு -\frac{y}{2}-ஐக் கூட்டவும்.
\frac{3}{2}y=\frac{3m}{2}+3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் -\frac{3m}{2}+1-ஐக் கழிக்கவும்.
y=m+2
சமன்பாட்டின் இரு பக்கங்களையும் \frac{3}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{1}{2}\left(m+2\right)-\frac{3m}{2}+1
x=-\frac{1}{2}y-\frac{3m}{2}+1-இல் y-க்கு 2+m-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{m}{2}-1-\frac{3m}{2}+1
2+m-ஐ -\frac{1}{2} முறை பெருக்கவும்.
x=-2m
-1-\frac{m}{2}-க்கு -\frac{3m}{2}+1-ஐக் கூட்டவும்.
x=-2m,y=m+2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+y=2-3m,x+2y=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2-3m\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}2&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}2-3m\\4\end{matrix}\right)
\left(\begin{matrix}2&1\\1&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}2-3m\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}2-3m\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-1}&-\frac{1}{2\times 2-1}\\-\frac{1}{2\times 2-1}&\frac{2}{2\times 2-1}\end{matrix}\right)\left(\begin{matrix}2-3m\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}2-3m\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(2-3m\right)-\frac{1}{3}\times 4\\-\frac{1}{3}\left(2-3m\right)+\frac{2}{3}\times 4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2m\\m+2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-2m,y=m+2
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+y=2-3m,x+2y=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2x+y=2-3m,2x+2\times 2y=2\times 4
2x மற்றும் x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
2x+y=2-3m,2x+4y=8
எளிமையாக்கவும்.
2x-2x+y-4y=2-3m-8
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x+y=2-3m-இலிருந்து 2x+4y=8-ஐக் கழிக்கவும்.
y-4y=2-3m-8
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-3y=2-3m-8
-4y-க்கு y-ஐக் கூட்டவும்.
-3y=-3m-6
-8-க்கு -3m+2-ஐக் கூட்டவும்.
y=m+2
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
x+2\left(m+2\right)=4
x+2y=4-இல் y-க்கு 2+m-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x+2m+4=4
2+m-ஐ 2 முறை பெருக்கவும்.
x=-2m
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4+2m-ஐக் கழிக்கவும்.
x=-2m,y=m+2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.