பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x+8y=16,-x+2y+11=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+8y=16
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-8y+16
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 8y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-8y+16\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-4y+8
-8y+16-ஐ \frac{1}{2} முறை பெருக்கவும்.
-\left(-4y+8\right)+2y+11=0
பிற சமன்பாடு -x+2y+11=0-இல் x-க்கு -4y+8-ஐப் பிரதியிடவும்.
4y-8+2y+11=0
-4y+8-ஐ -1 முறை பெருக்கவும்.
6y-8+11=0
2y-க்கு 4y-ஐக் கூட்டவும்.
6y+3=0
11-க்கு -8-ஐக் கூட்டவும்.
6y=-3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
y=-\frac{1}{2}
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=-4\left(-\frac{1}{2}\right)+8
x=-4y+8-இல் y-க்கு -\frac{1}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=2+8
-\frac{1}{2}-ஐ -4 முறை பெருக்கவும்.
x=10
2-க்கு 8-ஐக் கூட்டவும்.
x=10,y=-\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+8y=16,-x+2y+11=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-11\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-8\left(-1\right)}&-\frac{8}{2\times 2-8\left(-1\right)}\\-\frac{-1}{2\times 2-8\left(-1\right)}&\frac{2}{2\times 2-8\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{2}{3}\\\frac{1}{12}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 16-\frac{2}{3}\left(-11\right)\\\frac{1}{12}\times 16+\frac{1}{6}\left(-11\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-\frac{1}{2}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=10,y=-\frac{1}{2}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+8y=16,-x+2y+11=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2x-8y=-16,2\left(-1\right)x+2\times 2y+2\times 11=0
2x மற்றும் -x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
-2x-8y=-16,-2x+4y+22=0
எளிமையாக்கவும்.
-2x+2x-8y-4y-22=-16
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -2x-8y=-16-இலிருந்து -2x+4y+22=0-ஐக் கழிக்கவும்.
-8y-4y-22=-16
2x-க்கு -2x-ஐக் கூட்டவும். விதிகள் -2x மற்றும் 2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-12y-22=-16
-4y-க்கு -8y-ஐக் கூட்டவும்.
-12y=6
சமன்பாட்டின் இரு பக்கங்களிலும் 22-ஐக் கூட்டவும்.
y=-\frac{1}{2}
இரு பக்கங்களையும் -12-ஆல் வகுக்கவும்.
-x+2\left(-\frac{1}{2}\right)+11=0
-x+2y+11=0-இல் y-க்கு -\frac{1}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-x-1+11=0
-\frac{1}{2}-ஐ 2 முறை பெருக்கவும்.
-x+10=0
11-க்கு -1-ஐக் கூட்டவும்.
-x=-10
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 10-ஐக் கழிக்கவும்.
x=10
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=10,y=-\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.