பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x+4y=12,5x-8y=16
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+4y=12
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-4y+12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-4y+12\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-2y+6
-4y+12-ஐ \frac{1}{2} முறை பெருக்கவும்.
5\left(-2y+6\right)-8y=16
பிற சமன்பாடு 5x-8y=16-இல் x-க்கு -2y+6-ஐப் பிரதியிடவும்.
-10y+30-8y=16
-2y+6-ஐ 5 முறை பெருக்கவும்.
-18y+30=16
-8y-க்கு -10y-ஐக் கூட்டவும்.
-18y=-14
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 30-ஐக் கழிக்கவும்.
y=\frac{7}{9}
இரு பக்கங்களையும் -18-ஆல் வகுக்கவும்.
x=-2\times \frac{7}{9}+6
x=-2y+6-இல் y-க்கு \frac{7}{9}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{14}{9}+6
\frac{7}{9}-ஐ -2 முறை பெருக்கவும்.
x=\frac{40}{9}
-\frac{14}{9}-க்கு 6-ஐக் கூட்டவும்.
x=\frac{40}{9},y=\frac{7}{9}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+4y=12,5x-8y=16
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\16\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{2\left(-8\right)-4\times 5}&-\frac{4}{2\left(-8\right)-4\times 5}\\-\frac{5}{2\left(-8\right)-4\times 5}&\frac{2}{2\left(-8\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{9}\\\frac{5}{36}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 12+\frac{1}{9}\times 16\\\frac{5}{36}\times 12-\frac{1}{18}\times 16\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{9}\\\frac{7}{9}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{40}{9},y=\frac{7}{9}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+4y=12,5x-8y=16
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5\times 2x+5\times 4y=5\times 12,2\times 5x+2\left(-8\right)y=2\times 16
2x மற்றும் 5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
10x+20y=60,10x-16y=32
எளிமையாக்கவும்.
10x-10x+20y+16y=60-32
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 10x+20y=60-இலிருந்து 10x-16y=32-ஐக் கழிக்கவும்.
20y+16y=60-32
-10x-க்கு 10x-ஐக் கூட்டவும். விதிகள் 10x மற்றும் -10x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
36y=60-32
16y-க்கு 20y-ஐக் கூட்டவும்.
36y=28
-32-க்கு 60-ஐக் கூட்டவும்.
y=\frac{7}{9}
இரு பக்கங்களையும் 36-ஆல் வகுக்கவும்.
5x-8\times \frac{7}{9}=16
5x-8y=16-இல் y-க்கு \frac{7}{9}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
5x-\frac{56}{9}=16
\frac{7}{9}-ஐ -8 முறை பெருக்கவும்.
5x=\frac{200}{9}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{56}{9}-ஐக் கூட்டவும்.
x=\frac{40}{9}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{40}{9},y=\frac{7}{9}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.