பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x+3y=-2,3x+4y=-1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+3y=-2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-3y-2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-3y-2\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-\frac{3}{2}y-1
-3y-2-ஐ \frac{1}{2} முறை பெருக்கவும்.
3\left(-\frac{3}{2}y-1\right)+4y=-1
பிற சமன்பாடு 3x+4y=-1-இல் x-க்கு -\frac{3y}{2}-1-ஐப் பிரதியிடவும்.
-\frac{9}{2}y-3+4y=-1
-\frac{3y}{2}-1-ஐ 3 முறை பெருக்கவும்.
-\frac{1}{2}y-3=-1
4y-க்கு -\frac{9y}{2}-ஐக் கூட்டவும்.
-\frac{1}{2}y=2
சமன்பாட்டின் இரு பக்கங்களிலும் 3-ஐக் கூட்டவும்.
y=-4
இரு பக்கங்களையும் -2-ஆல் பெருக்கவும்.
x=-\frac{3}{2}\left(-4\right)-1
x=-\frac{3}{2}y-1-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=6-1
-4-ஐ -\frac{3}{2} முறை பெருக்கவும்.
x=5
6-க்கு -1-ஐக் கூட்டவும்.
x=5,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+3y=-2,3x+4y=-1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\left(-2\right)+3\left(-1\right)\\3\left(-2\right)-2\left(-1\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=5,y=-4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+3y=-2,3x+4y=-1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3\times 2x+3\times 3y=3\left(-2\right),2\times 3x+2\times 4y=2\left(-1\right)
2x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
6x+9y=-6,6x+8y=-2
எளிமையாக்கவும்.
6x-6x+9y-8y=-6+2
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 6x+9y=-6-இலிருந்து 6x+8y=-2-ஐக் கழிக்கவும்.
9y-8y=-6+2
-6x-க்கு 6x-ஐக் கூட்டவும். விதிகள் 6x மற்றும் -6x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
y=-6+2
-8y-க்கு 9y-ஐக் கூட்டவும்.
y=-4
2-க்கு -6-ஐக் கூட்டவும்.
3x+4\left(-4\right)=-1
3x+4y=-1-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x-16=-1
-4-ஐ 4 முறை பெருக்கவும்.
3x=15
சமன்பாட்டின் இரு பக்கங்களிலும் 16-ஐக் கூட்டவும்.
x=5
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=5,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.