\left\{ \begin{array} { l } { 2 a + 3 b = 4 } \\ { - 2 a + 3 b = - 16 } \end{array} \right.
a, b-க்காகத் தீர்க்கவும்
a=5
b=-2
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2a+3b=4,-2a+3b=-16
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2a+3b=4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் a-ஐத் தனிப்படுத்தி a-க்காக இதைத் தீர்க்கவும்.
2a=-3b+4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3b-ஐக் கழிக்கவும்.
a=\frac{1}{2}\left(-3b+4\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
a=-\frac{3}{2}b+2
-3b+4-ஐ \frac{1}{2} முறை பெருக்கவும்.
-2\left(-\frac{3}{2}b+2\right)+3b=-16
பிற சமன்பாடு -2a+3b=-16-இல் a-க்கு -\frac{3b}{2}+2-ஐப் பிரதியிடவும்.
3b-4+3b=-16
-\frac{3b}{2}+2-ஐ -2 முறை பெருக்கவும்.
6b-4=-16
3b-க்கு 3b-ஐக் கூட்டவும்.
6b=-12
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
b=-2
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
a=-\frac{3}{2}\left(-2\right)+2
a=-\frac{3}{2}b+2-இல் b-க்கு -2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
a=3+2
-2-ஐ -\frac{3}{2} முறை பெருக்கவும்.
a=5
3-க்கு 2-ஐக் கூட்டவும்.
a=5,b=-2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2a+3b=4,-2a+3b=-16
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&3\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-16\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}2&3\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
\left(\begin{matrix}2&3\\-2&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\left(-2\right)}&-\frac{3}{2\times 3-3\left(-2\right)}\\-\frac{-2}{2\times 3-3\left(-2\right)}&\frac{2}{2\times 3-3\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-16\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}4\\-16\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 4-\frac{1}{4}\left(-16\right)\\\frac{1}{6}\times 4+\frac{1}{6}\left(-16\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
a=5,b=-2
அணிக் கூறுகள் a மற்றும் b-ஐப் பிரித்தெடுக்கவும்.
2a+3b=4,-2a+3b=-16
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2a+2a+3b-3b=4+16
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2a+3b=4-இலிருந்து -2a+3b=-16-ஐக் கழிக்கவும்.
2a+2a=4+16
-3b-க்கு 3b-ஐக் கூட்டவும். விதிகள் 3b மற்றும் -3b ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
4a=4+16
2a-க்கு 2a-ஐக் கூட்டவும்.
4a=20
16-க்கு 4-ஐக் கூட்டவும்.
a=5
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
-2\times 5+3b=-16
-2a+3b=-16-இல் a-க்கு 5-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக b-க்குத் தீர்க்கலாம்.
-10+3b=-16
5-ஐ -2 முறை பெருக்கவும்.
3b=-6
சமன்பாட்டின் இரு பக்கங்களிலும் 10-ஐக் கூட்டவும்.
b=-2
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
a=5,b=-2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}