\left\{ \begin{array} { l } { 14 x - 3 y = - 63 } \\ { 7 x + 2 y = - 7 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=-3
y=7
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
14x-3y=-63,7x+2y=-7
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
14x-3y=-63
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
14x=3y-63
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
x=\frac{1}{14}\left(3y-63\right)
இரு பக்கங்களையும் 14-ஆல் வகுக்கவும்.
x=\frac{3}{14}y-\frac{9}{2}
-63+3y-ஐ \frac{1}{14} முறை பெருக்கவும்.
7\left(\frac{3}{14}y-\frac{9}{2}\right)+2y=-7
பிற சமன்பாடு 7x+2y=-7-இல் x-க்கு \frac{3y}{14}-\frac{9}{2}-ஐப் பிரதியிடவும்.
\frac{3}{2}y-\frac{63}{2}+2y=-7
\frac{3y}{14}-\frac{9}{2}-ஐ 7 முறை பெருக்கவும்.
\frac{7}{2}y-\frac{63}{2}=-7
2y-க்கு \frac{3y}{2}-ஐக் கூட்டவும்.
\frac{7}{2}y=\frac{49}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{63}{2}-ஐக் கூட்டவும்.
y=7
சமன்பாட்டின் இரு பக்கங்களையும் \frac{7}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{3}{14}\times 7-\frac{9}{2}
x=\frac{3}{14}y-\frac{9}{2}-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{3-9}{2}
7-ஐ \frac{3}{14} முறை பெருக்கவும்.
x=-3
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{3}{2} உடன் -\frac{9}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-3,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
14x-3y=-63,7x+2y=-7
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}14&-3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-63\\-7\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}14&-3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
\left(\begin{matrix}14&-3\\7&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-3\\7&2\end{matrix}\right))\left(\begin{matrix}-63\\-7\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{14\times 2-\left(-3\times 7\right)}&-\frac{-3}{14\times 2-\left(-3\times 7\right)}\\-\frac{7}{14\times 2-\left(-3\times 7\right)}&\frac{14}{14\times 2-\left(-3\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-63\\-7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{49}&\frac{3}{49}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-63\\-7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{49}\left(-63\right)+\frac{3}{49}\left(-7\right)\\-\frac{1}{7}\left(-63\right)+\frac{2}{7}\left(-7\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-3,y=7
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
14x-3y=-63,7x+2y=-7
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
7\times 14x+7\left(-3\right)y=7\left(-63\right),14\times 7x+14\times 2y=14\left(-7\right)
14x மற்றும் 7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 14-ஆலும் பெருக்கவும்.
98x-21y=-441,98x+28y=-98
எளிமையாக்கவும்.
98x-98x-21y-28y=-441+98
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 98x-21y=-441-இலிருந்து 98x+28y=-98-ஐக் கழிக்கவும்.
-21y-28y=-441+98
-98x-க்கு 98x-ஐக் கூட்டவும். விதிகள் 98x மற்றும் -98x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-49y=-441+98
-28y-க்கு -21y-ஐக் கூட்டவும்.
-49y=-343
98-க்கு -441-ஐக் கூட்டவும்.
y=7
இரு பக்கங்களையும் -49-ஆல் வகுக்கவும்.
7x+2\times 7=-7
7x+2y=-7-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
7x+14=-7
7-ஐ 2 முறை பெருக்கவும்.
7x=-21
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 14-ஐக் கழிக்கவும்.
x=-3
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=-3,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}