பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

1.5x-3.5y=-5,-1.2x+2.5y=1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
1.5x-3.5y=-5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
1.5x=3.5y-5
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{7y}{2}-ஐக் கூட்டவும்.
x=\frac{2}{3}\left(3.5y-5\right)
சமன்பாட்டின் இரு பக்கங்களையும் 1.5-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{7}{3}y-\frac{10}{3}
\frac{7y}{2}-5-ஐ \frac{2}{3} முறை பெருக்கவும்.
-1.2\left(\frac{7}{3}y-\frac{10}{3}\right)+2.5y=1
பிற சமன்பாடு -1.2x+2.5y=1-இல் x-க்கு \frac{7y-10}{3}-ஐப் பிரதியிடவும்.
-2.8y+4+2.5y=1
\frac{7y-10}{3}-ஐ -1.2 முறை பெருக்கவும்.
-0.3y+4=1
\frac{5y}{2}-க்கு -\frac{14y}{5}-ஐக் கூட்டவும்.
-0.3y=-3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
y=10
சமன்பாட்டின் இரு பக்கங்களையும் -0.3-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{7}{3}\times 10-\frac{10}{3}
x=\frac{7}{3}y-\frac{10}{3}-இல் y-க்கு 10-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{70-10}{3}
10-ஐ \frac{7}{3} முறை பெருக்கவும்.
x=20
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{70}{3} உடன் -\frac{10}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=20,y=10
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
1.5x-3.5y=-5,-1.2x+2.5y=1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1.5&-3.5\\-1.2&2.5\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2.5}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}&-\frac{-3.5}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}\\-\frac{-1.2}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}&\frac{1.5}{1.5\times 2.5-\left(-3.5\left(-1.2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{50}{9}&-\frac{70}{9}\\-\frac{8}{3}&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{50}{9}\left(-5\right)-\frac{70}{9}\\-\frac{8}{3}\left(-5\right)-\frac{10}{3}\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\10\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=20,y=10
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
1.5x-3.5y=-5,-1.2x+2.5y=1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-1.2\times 1.5x-1.2\left(-3.5\right)y=-1.2\left(-5\right),1.5\left(-1.2\right)x+1.5\times 2.5y=1.5
\frac{3x}{2} மற்றும் -\frac{6x}{5}-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1.2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1.5-ஆலும் பெருக்கவும்.
-1.8x+4.2y=6,-1.8x+3.75y=1.5
எளிமையாக்கவும்.
-1.8x+1.8x+4.2y-3.75y=6-1.5
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -1.8x+4.2y=6-இலிருந்து -1.8x+3.75y=1.5-ஐக் கழிக்கவும்.
4.2y-3.75y=6-1.5
\frac{9x}{5}-க்கு -\frac{9x}{5}-ஐக் கூட்டவும். விதிகள் -\frac{9x}{5} மற்றும் \frac{9x}{5} ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
0.45y=6-1.5
-\frac{15y}{4}-க்கு \frac{21y}{5}-ஐக் கூட்டவும்.
0.45y=4.5
-1.5-க்கு 6-ஐக் கூட்டவும்.
y=10
சமன்பாட்டின் இரு பக்கங்களையும் 0.45-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
-1.2x+2.5\times 10=1
-1.2x+2.5y=1-இல் y-க்கு 10-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-1.2x+25=1
10-ஐ 2.5 முறை பெருக்கவும்.
-1.2x=-24
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 25-ஐக் கழிக்கவும்.
x=20
சமன்பாட்டின் இரு பக்கங்களையும் -1.2-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=20,y=10
இப்போது அமைப்பு சரிசெய்யப்பட்டது.