பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

0.9x-0.2y=19
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 0.2y-ஐக் கழிக்கவும்.
0.3x-0.5y=29,0.9x-0.2y=19
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
0.3x-0.5y=29
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
0.3x=0.5y+29
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{y}{2}-ஐக் கூட்டவும்.
x=\frac{10}{3}\left(0.5y+29\right)
சமன்பாட்டின் இரு பக்கங்களையும் 0.3-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{5}{3}y+\frac{290}{3}
\frac{y}{2}+29-ஐ \frac{10}{3} முறை பெருக்கவும்.
0.9\left(\frac{5}{3}y+\frac{290}{3}\right)-0.2y=19
பிற சமன்பாடு 0.9x-0.2y=19-இல் x-க்கு \frac{5y+290}{3}-ஐப் பிரதியிடவும்.
1.5y+87-0.2y=19
\frac{5y+290}{3}-ஐ 0.9 முறை பெருக்கவும்.
1.3y+87=19
-\frac{y}{5}-க்கு \frac{3y}{2}-ஐக் கூட்டவும்.
1.3y=-68
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 87-ஐக் கழிக்கவும்.
y=-\frac{680}{13}
சமன்பாட்டின் இரு பக்கங்களையும் 1.3-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{5}{3}\left(-\frac{680}{13}\right)+\frac{290}{3}
x=\frac{5}{3}y+\frac{290}{3}-இல் y-க்கு -\frac{680}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{3400}{39}+\frac{290}{3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{680}{13}-ஐ \frac{5}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{370}{39}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{3400}{39} உடன் \frac{290}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{370}{39},y=-\frac{680}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
0.9x-0.2y=19
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 0.2y-ஐக் கழிக்கவும்.
0.3x-0.5y=29,0.9x-0.2y=19
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}29\\19\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}29\\19\end{matrix}\right)
\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}29\\19\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.3&-0.5\\0.9&-0.2\end{matrix}\right))\left(\begin{matrix}29\\19\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.2}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}&-\frac{-0.5}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}\\-\frac{0.9}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}&\frac{0.3}{0.3\left(-0.2\right)-\left(-0.5\times 0.9\right)}\end{matrix}\right)\left(\begin{matrix}29\\19\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{39}&\frac{50}{39}\\-\frac{30}{13}&\frac{10}{13}\end{matrix}\right)\left(\begin{matrix}29\\19\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{39}\times 29+\frac{50}{39}\times 19\\-\frac{30}{13}\times 29+\frac{10}{13}\times 19\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{370}{39}\\-\frac{680}{13}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{370}{39},y=-\frac{680}{13}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
0.9x-0.2y=19
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 0.2y-ஐக் கழிக்கவும்.
0.3x-0.5y=29,0.9x-0.2y=19
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
0.9\times 0.3x+0.9\left(-0.5\right)y=0.9\times 29,0.3\times 0.9x+0.3\left(-0.2\right)y=0.3\times 19
\frac{3x}{10} மற்றும் \frac{9x}{10}-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 0.9-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 0.3-ஆலும் பெருக்கவும்.
0.27x-0.45y=26.1,0.27x-0.06y=5.7
எளிமையாக்கவும்.
0.27x-0.27x-0.45y+0.06y=\frac{261-57}{10}
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 0.27x-0.45y=26.1-இலிருந்து 0.27x-0.06y=5.7-ஐக் கழிக்கவும்.
-0.45y+0.06y=\frac{261-57}{10}
-\frac{27x}{100}-க்கு \frac{27x}{100}-ஐக் கூட்டவும். விதிகள் \frac{27x}{100} மற்றும் -\frac{27x}{100} ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-0.39y=\frac{261-57}{10}
\frac{3y}{50}-க்கு -\frac{9y}{20}-ஐக் கூட்டவும்.
-0.39y=20.4
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -5.7 உடன் 26.1-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=-\frac{680}{13}
சமன்பாட்டின் இரு பக்கங்களையும் -0.39-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
0.9x-0.2\left(-\frac{680}{13}\right)=19
0.9x-0.2y=19-இல் y-க்கு -\frac{680}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
0.9x+\frac{136}{13}=19
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{680}{13}-ஐ -0.2 முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
0.9x=\frac{111}{13}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{136}{13}-ஐக் கழிக்கவும்.
x=\frac{370}{39}
சமன்பாட்டின் இரு பக்கங்களையும் 0.9-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{370}{39},y=-\frac{680}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.