\left\{ \begin{array} { l } { - 7 x - 2 y = 14 } \\ { 6 x + 6 y = 18 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=-4
y=7
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
-7x-2y=14,6x+6y=18
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-7x-2y=14
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-7x=2y+14
சமன்பாட்டின் இரு பக்கங்களிலும் 2y-ஐக் கூட்டவும்.
x=-\frac{1}{7}\left(2y+14\right)
இரு பக்கங்களையும் -7-ஆல் வகுக்கவும்.
x=-\frac{2}{7}y-2
14+2y-ஐ -\frac{1}{7} முறை பெருக்கவும்.
6\left(-\frac{2}{7}y-2\right)+6y=18
பிற சமன்பாடு 6x+6y=18-இல் x-க்கு -\frac{2y}{7}-2-ஐப் பிரதியிடவும்.
-\frac{12}{7}y-12+6y=18
-\frac{2y}{7}-2-ஐ 6 முறை பெருக்கவும்.
\frac{30}{7}y-12=18
6y-க்கு -\frac{12y}{7}-ஐக் கூட்டவும்.
\frac{30}{7}y=30
சமன்பாட்டின் இரு பக்கங்களிலும் 12-ஐக் கூட்டவும்.
y=7
சமன்பாட்டின் இரு பக்கங்களையும் \frac{30}{7}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{2}{7}\times 7-2
x=-\frac{2}{7}y-2-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-2-2
7-ஐ -\frac{2}{7} முறை பெருக்கவும்.
x=-4
-2-க்கு -2-ஐக் கூட்டவும்.
x=-4,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-7x-2y=14,6x+6y=18
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\18\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}14\\18\end{matrix}\right)
\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}14\\18\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-2\\6&6\end{matrix}\right))\left(\begin{matrix}14\\18\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-7\times 6-\left(-2\times 6\right)}&-\frac{-2}{-7\times 6-\left(-2\times 6\right)}\\-\frac{6}{-7\times 6-\left(-2\times 6\right)}&-\frac{7}{-7\times 6-\left(-2\times 6\right)}\end{matrix}\right)\left(\begin{matrix}14\\18\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{1}{15}\\\frac{1}{5}&\frac{7}{30}\end{matrix}\right)\left(\begin{matrix}14\\18\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 14-\frac{1}{15}\times 18\\\frac{1}{5}\times 14+\frac{7}{30}\times 18\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-4,y=7
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-7x-2y=14,6x+6y=18
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
6\left(-7\right)x+6\left(-2\right)y=6\times 14,-7\times 6x-7\times 6y=-7\times 18
-7x மற்றும் 6x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -7-ஆலும் பெருக்கவும்.
-42x-12y=84,-42x-42y=-126
எளிமையாக்கவும்.
-42x+42x-12y+42y=84+126
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -42x-12y=84-இலிருந்து -42x-42y=-126-ஐக் கழிக்கவும்.
-12y+42y=84+126
42x-க்கு -42x-ஐக் கூட்டவும். விதிகள் -42x மற்றும் 42x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
30y=84+126
42y-க்கு -12y-ஐக் கூட்டவும்.
30y=210
126-க்கு 84-ஐக் கூட்டவும்.
y=7
இரு பக்கங்களையும் 30-ஆல் வகுக்கவும்.
6x+6\times 7=18
6x+6y=18-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
6x+42=18
7-ஐ 6 முறை பெருக்கவும்.
6x=-24
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 42-ஐக் கழிக்கவும்.
x=-4
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=-4,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}