பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-6x-4y=2,2x+8y=26
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-6x-4y=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-6x=4y+2
சமன்பாட்டின் இரு பக்கங்களிலும் 4y-ஐக் கூட்டவும்.
x=-\frac{1}{6}\left(4y+2\right)
இரு பக்கங்களையும் -6-ஆல் வகுக்கவும்.
x=-\frac{2}{3}y-\frac{1}{3}
4y+2-ஐ -\frac{1}{6} முறை பெருக்கவும்.
2\left(-\frac{2}{3}y-\frac{1}{3}\right)+8y=26
பிற சமன்பாடு 2x+8y=26-இல் x-க்கு \frac{-2y-1}{3}-ஐப் பிரதியிடவும்.
-\frac{4}{3}y-\frac{2}{3}+8y=26
\frac{-2y-1}{3}-ஐ 2 முறை பெருக்கவும்.
\frac{20}{3}y-\frac{2}{3}=26
8y-க்கு -\frac{4y}{3}-ஐக் கூட்டவும்.
\frac{20}{3}y=\frac{80}{3}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{2}{3}-ஐக் கூட்டவும்.
y=4
சமன்பாட்டின் இரு பக்கங்களையும் \frac{20}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{2}{3}\times 4-\frac{1}{3}
x=-\frac{2}{3}y-\frac{1}{3}-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-8-1}{3}
4-ஐ -\frac{2}{3} முறை பெருக்கவும்.
x=-3
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{8}{3} உடன் -\frac{1}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-3,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-6x-4y=2,2x+8y=26
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\26\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&-4\\2&8\end{matrix}\right))\left(\begin{matrix}2\\26\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-6\times 8-\left(-4\times 2\right)}&-\frac{-4}{-6\times 8-\left(-4\times 2\right)}\\-\frac{2}{-6\times 8-\left(-4\times 2\right)}&-\frac{6}{-6\times 8-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}2\\26\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{1}{10}\\\frac{1}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}2\\26\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 2-\frac{1}{10}\times 26\\\frac{1}{20}\times 2+\frac{3}{20}\times 26\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-3,y=4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-6x-4y=2,2x+8y=26
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2\left(-6\right)x+2\left(-4\right)y=2\times 2,-6\times 2x-6\times 8y=-6\times 26
-6x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -6-ஆலும் பெருக்கவும்.
-12x-8y=4,-12x-48y=-156
எளிமையாக்கவும்.
-12x+12x-8y+48y=4+156
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -12x-8y=4-இலிருந்து -12x-48y=-156-ஐக் கழிக்கவும்.
-8y+48y=4+156
12x-க்கு -12x-ஐக் கூட்டவும். விதிகள் -12x மற்றும் 12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
40y=4+156
48y-க்கு -8y-ஐக் கூட்டவும்.
40y=160
156-க்கு 4-ஐக் கூட்டவும்.
y=4
இரு பக்கங்களையும் 40-ஆல் வகுக்கவும்.
2x+8\times 4=26
2x+8y=26-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x+32=26
4-ஐ 8 முறை பெருக்கவும்.
2x=-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 32-ஐக் கழிக்கவும்.
x=-3
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-3,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.