பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-10x-3y=9,-5x+5y=-2
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-10x-3y=9
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-10x=3y+9
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
x=-\frac{1}{10}\left(3y+9\right)
இரு பக்கங்களையும் -10-ஆல் வகுக்கவும்.
x=-\frac{3}{10}y-\frac{9}{10}
9+3y-ஐ -\frac{1}{10} முறை பெருக்கவும்.
-5\left(-\frac{3}{10}y-\frac{9}{10}\right)+5y=-2
பிற சமன்பாடு -5x+5y=-2-இல் x-க்கு \frac{-3y-9}{10}-ஐப் பிரதியிடவும்.
\frac{3}{2}y+\frac{9}{2}+5y=-2
\frac{-3y-9}{10}-ஐ -5 முறை பெருக்கவும்.
\frac{13}{2}y+\frac{9}{2}=-2
5y-க்கு \frac{3y}{2}-ஐக் கூட்டவும்.
\frac{13}{2}y=-\frac{13}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{9}{2}-ஐக் கழிக்கவும்.
y=-1
சமன்பாட்டின் இரு பக்கங்களையும் \frac{13}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{3}{10}\left(-1\right)-\frac{9}{10}
x=-\frac{3}{10}y-\frac{9}{10}-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{3-9}{10}
-1-ஐ -\frac{3}{10} முறை பெருக்கவும்.
x=-\frac{3}{5}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{3}{10} உடன் -\frac{9}{10}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{3}{5},y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-10x-3y=9,-5x+5y=-2
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-2\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&-3\\-5&5\end{matrix}\right))\left(\begin{matrix}9\\-2\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{-3}{-10\times 5-\left(-3\left(-5\right)\right)}\\-\frac{-5}{-10\times 5-\left(-3\left(-5\right)\right)}&-\frac{10}{-10\times 5-\left(-3\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&-\frac{3}{65}\\-\frac{1}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}9\\-2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 9-\frac{3}{65}\left(-2\right)\\-\frac{1}{13}\times 9+\frac{2}{13}\left(-2\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{3}{5},y=-1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-10x-3y=9,-5x+5y=-2
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-5\left(-10\right)x-5\left(-3\right)y=-5\times 9,-10\left(-5\right)x-10\times 5y=-10\left(-2\right)
-10x மற்றும் -5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -10-ஆலும் பெருக்கவும்.
50x+15y=-45,50x-50y=20
எளிமையாக்கவும்.
50x-50x+15y+50y=-45-20
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 50x+15y=-45-இலிருந்து 50x-50y=20-ஐக் கழிக்கவும்.
15y+50y=-45-20
-50x-க்கு 50x-ஐக் கூட்டவும். விதிகள் 50x மற்றும் -50x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
65y=-45-20
50y-க்கு 15y-ஐக் கூட்டவும்.
65y=-65
-20-க்கு -45-ஐக் கூட்டவும்.
y=-1
இரு பக்கங்களையும் 65-ஆல் வகுக்கவும்.
-5x+5\left(-1\right)=-2
-5x+5y=-2-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-5x-5=-2
-1-ஐ 5 முறை பெருக்கவும்.
-5x=3
சமன்பாட்டின் இரு பக்கங்களிலும் 5-ஐக் கூட்டவும்.
x=-\frac{3}{5}
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
x=-\frac{3}{5},y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.