\left\{ \begin{array} { l } { \frac { 2 } { 3 } x + \frac { 1 } { 2 } y = 5 } \\ { x - 3 y = 6 . } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x = \frac{36}{5} = 7\frac{1}{5} = 7.2
y=\frac{2}{5}=0.4
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
\frac{2}{3}x+\frac{1}{2}y=5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
\frac{2}{3}x=-\frac{1}{2}y+5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{y}{2}-ஐக் கழிக்கவும்.
x=\frac{3}{2}\left(-\frac{1}{2}y+5\right)
சமன்பாட்டின் இரு பக்கங்களையும் \frac{2}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{3}{4}y+\frac{15}{2}
-\frac{y}{2}+5-ஐ \frac{3}{2} முறை பெருக்கவும்.
-\frac{3}{4}y+\frac{15}{2}-3y=6
பிற சமன்பாடு x-3y=6-இல் x-க்கு -\frac{3y}{4}+\frac{15}{2}-ஐப் பிரதியிடவும்.
-\frac{15}{4}y+\frac{15}{2}=6
-3y-க்கு -\frac{3y}{4}-ஐக் கூட்டவும்.
-\frac{15}{4}y=-\frac{3}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{15}{2}-ஐக் கழிக்கவும்.
y=\frac{2}{5}
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{15}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{3}{4}\times \frac{2}{5}+\frac{15}{2}
x=-\frac{3}{4}y+\frac{15}{2}-இல் y-க்கு \frac{2}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{3}{10}+\frac{15}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{2}{5}-ஐ -\frac{3}{4} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{36}{5}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{3}{10} உடன் \frac{15}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{36}{5},y=\frac{2}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}&-\frac{\frac{1}{2}}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}\\-\frac{1}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}&\frac{\frac{2}{3}}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\times 5+\frac{1}{5}\times 6\\\frac{2}{5}\times 5-\frac{4}{15}\times 6\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{36}{5}\\\frac{2}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{36}{5},y=\frac{2}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
\frac{2}{3}x+\frac{1}{2}y=5,\frac{2}{3}x+\frac{2}{3}\left(-3\right)y=\frac{2}{3}\times 6
\frac{2x}{3} மற்றும் x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் \frac{2}{3}-ஆலும் பெருக்கவும்.
\frac{2}{3}x+\frac{1}{2}y=5,\frac{2}{3}x-2y=4
எளிமையாக்கவும்.
\frac{2}{3}x-\frac{2}{3}x+\frac{1}{2}y+2y=5-4
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் \frac{2}{3}x+\frac{1}{2}y=5-இலிருந்து \frac{2}{3}x-2y=4-ஐக் கழிக்கவும்.
\frac{1}{2}y+2y=5-4
-\frac{2x}{3}-க்கு \frac{2x}{3}-ஐக் கூட்டவும். விதிகள் \frac{2x}{3} மற்றும் -\frac{2x}{3} ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
\frac{5}{2}y=5-4
2y-க்கு \frac{y}{2}-ஐக் கூட்டவும்.
\frac{5}{2}y=1
-4-க்கு 5-ஐக் கூட்டவும்.
y=\frac{2}{5}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{5}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x-3\times \frac{2}{5}=6
x-3y=6-இல் y-க்கு \frac{2}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x-\frac{6}{5}=6
\frac{2}{5}-ஐ -3 முறை பெருக்கவும்.
x=\frac{36}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{6}{5}-ஐக் கூட்டவும்.
x=\frac{36}{5},y=\frac{2}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}