பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y, x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

y+2x=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
y+2x=2,5y+2x=14
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
y+2x=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
y=-2x+2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2x-ஐக் கழிக்கவும்.
5\left(-2x+2\right)+2x=14
பிற சமன்பாடு 5y+2x=14-இல் y-க்கு -2x+2-ஐப் பிரதியிடவும்.
-10x+10+2x=14
-2x+2-ஐ 5 முறை பெருக்கவும்.
-8x+10=14
2x-க்கு -10x-ஐக் கூட்டவும்.
-8x=4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 10-ஐக் கழிக்கவும்.
x=-\frac{1}{2}
இரு பக்கங்களையும் -8-ஆல் வகுக்கவும்.
y=-2\left(-\frac{1}{2}\right)+2
y=-2x+2-இல் x-க்கு -\frac{1}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=1+2
-\frac{1}{2}-ஐ -2 முறை பெருக்கவும்.
y=3
1-க்கு 2-ஐக் கூட்டவும்.
y=3,x=-\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
y+2x=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
y+2x=2,5y+2x=14
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\14\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 5}&-\frac{2}{2-2\times 5}\\-\frac{5}{2-2\times 5}&\frac{1}{2-2\times 5}\end{matrix}\right)\left(\begin{matrix}2\\14\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}2\\14\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 2+\frac{1}{4}\times 14\\\frac{5}{8}\times 2-\frac{1}{8}\times 14\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{1}{2}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=3,x=-\frac{1}{2}
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
y+2x=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
y+2x=2,5y+2x=14
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
y-5y+2x-2x=2-14
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் y+2x=2-இலிருந்து 5y+2x=14-ஐக் கழிக்கவும்.
y-5y=2-14
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-4y=2-14
-5y-க்கு y-ஐக் கூட்டவும்.
-4y=-12
-14-க்கு 2-ஐக் கூட்டவும்.
y=3
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
5\times 3+2x=14
5y+2x=14-இல் y-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
15+2x=14
3-ஐ 5 முறை பெருக்கவும்.
2x=-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 15-ஐக் கழிக்கவும்.
x=-\frac{1}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
y=3,x=-\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.