பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-x+5y=1,-2x-5y=11
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-x+5y=1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-x=-5y+1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 5y-ஐக் கழிக்கவும்.
x=-\left(-5y+1\right)
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=5y-1
-5y+1-ஐ -1 முறை பெருக்கவும்.
-2\left(5y-1\right)-5y=11
பிற சமன்பாடு -2x-5y=11-இல் x-க்கு 5y-1-ஐப் பிரதியிடவும்.
-10y+2-5y=11
5y-1-ஐ -2 முறை பெருக்கவும்.
-15y+2=11
-5y-க்கு -10y-ஐக் கூட்டவும்.
-15y=9
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
y=-\frac{3}{5}
இரு பக்கங்களையும் -15-ஆல் வகுக்கவும்.
x=5\left(-\frac{3}{5}\right)-1
x=5y-1-இல் y-க்கு -\frac{3}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-3-1
-\frac{3}{5}-ஐ 5 முறை பெருக்கவும்.
x=-4
-3-க்கு -1-ஐக் கூட்டவும்.
x=-4,y=-\frac{3}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-x+5y=1,-2x-5y=11
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&5\\-2&-5\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-\left(-5\right)-5\left(-2\right)}&-\frac{5}{-\left(-5\right)-5\left(-2\right)}\\-\frac{-2}{-\left(-5\right)-5\left(-2\right)}&-\frac{1}{-\left(-5\right)-5\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{1}{3}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}-\frac{1}{3}\times 11\\\frac{2}{15}-\frac{1}{15}\times 11\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-\frac{3}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-4,y=-\frac{3}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-x+5y=1,-2x-5y=11
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2\left(-1\right)x-2\times 5y=-2,-\left(-2\right)x-\left(-5y\right)=-11
-x மற்றும் -2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1-ஆலும் பெருக்கவும்.
2x-10y=-2,2x+5y=-11
எளிமையாக்கவும்.
2x-2x-10y-5y=-2+11
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x-10y=-2-இலிருந்து 2x+5y=-11-ஐக் கழிக்கவும்.
-10y-5y=-2+11
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-15y=-2+11
-5y-க்கு -10y-ஐக் கூட்டவும்.
-15y=9
11-க்கு -2-ஐக் கூட்டவும்.
y=-\frac{3}{5}
இரு பக்கங்களையும் -15-ஆல் வகுக்கவும்.
-2x-5\left(-\frac{3}{5}\right)=11
-2x-5y=11-இல் y-க்கு -\frac{3}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-2x+3=11
-\frac{3}{5}-ஐ -5 முறை பெருக்கவும்.
-2x=8
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
x=-4
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
x=-4,y=-\frac{3}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.