பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int _{0}^{2}\left(x\left(x^{2}-4x+4\right)\right)^{2}\mathrm{d}x
\left(x-2\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
\int _{0}^{2}\left(x^{3}-4x^{2}+4x\right)^{2}\mathrm{d}x
x-ஐ x^{2}-4x+4-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int _{0}^{2}x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
x^{3}-4x^{2}+4x-ஐ வர்க்கமாக்கவும்.
\int x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
முதலில் வரையறுக்கப்படாத தொகையீட்டை மதிப்பிடவும்.
\int x^{6}\mathrm{d}x+\int -8x^{5}\mathrm{d}x+\int 24x^{4}\mathrm{d}x+\int -32x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
\int x^{6}\mathrm{d}x-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
\frac{x^{7}}{7}-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{7}}{7}-ஐ \int x^{6}\mathrm{d}x-ஆக மாற்றவும்.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{6}}{6}-ஐ \int x^{5}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{6}}{6}-ஐ -8 முறை பெருக்கவும்.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{5}}{5}-ஐ \int x^{4}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{5}}{5}-ஐ 24 முறை பெருக்கவும்.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+16\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{4}}{4}-ஐ \int x^{3}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{4}}{4}-ஐ -32 முறை பெருக்கவும்.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+\frac{16x^{3}}{3}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{3}}{3}-ஐ \int x^{2}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{3}}{3}-ஐ 16 முறை பெருக்கவும்.
\frac{16x^{3}}{3}-8x^{4}+\frac{24x^{5}}{5}-\frac{4x^{6}}{3}+\frac{x^{7}}{7}
எளிமையாக்கவும்.
\frac{16}{3}\times 2^{3}-8\times 2^{4}+\frac{24}{5}\times 2^{5}-\frac{4}{3}\times 2^{6}+\frac{2^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-8\times 0^{4}+\frac{24}{5}\times 0^{5}-\frac{4}{3}\times 0^{6}+\frac{0^{7}}{7}\right)
தீர்மானமான தொகையீடு என்பது தொகையீட்டின் அதிகபட்ச வரம்பில் மதிப்பிடப்பட்ட எக்ஸ்பிரஷனின் எதிர்வகைக்கெழுவை தொகையீட்டின் குறைந்தபட்ச வரம்பில் மதிப்பிடப்பட்ட எதிர்வகைக்கெழுவைக் கழிப்பதாகும்.
\frac{128}{105}
எளிமையாக்கவும்.