மதிப்பிடவும்
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}+С
x குறித்து வகையிடவும்
2x\left(x^{2}+1\right)^{3}
வினாடி வினா
Integration
இதற்கு ஒத்த 5 கணக்குகள்:
\int{ 2x { \left( { x }^{ 2 } +1 \right) }^{ 3 } }d x
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
\left(x^{2}+1\right)^{3}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} பயன்படுத்தவும்.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 6-ஐப் பெற, 2 மற்றும் 3-ஐப் பெருக்கவும்.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 4-ஐப் பெற, 2 மற்றும் 2-ஐப் பெருக்கவும்.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
2x-ஐ x^{6}+3x^{4}+3x^{2}+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{8}}{8}-ஐ \int x^{7}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{8}}{8}-ஐ 2 முறை பெருக்கவும்.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{6}}{6}-ஐ \int x^{5}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{6}}{6}-ஐ 6 முறை பெருக்கவும்.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{4}}{4}-ஐ \int x^{3}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{4}}{4}-ஐ 6 முறை பெருக்கவும்.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{2}}{2}-ஐ \int x\mathrm{d}x-ஆக மாற்றவும். \frac{x^{2}}{2}-ஐ 2 முறை பெருக்கவும்.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
f\left(x\right)-இன் எதிர்வகைக்கெழுவாக F\left(x\right) இருக்கிறது எனில், f\left(x\right)-இன் அனைத்து எதிர்வகைக்கெழுக்களின் தொகுப்பு, F\left(x\right)+C-ஆள் வழங்கப்படும். எனவே முடிவில் தொகையீட்டு மாறிலி C\in \mathrm{R}-ஐச் சேர்க்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}