மதிப்பிடவும்
\frac{x^{2}}{2}-25x+С
x குறித்து வகையிடவும்
x-25
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\int \left(\sqrt{x}\right)^{2}-5^{2}\mathrm{d}x
\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)-ஐக் கருத்தில் கொள்ளவும். பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\int x-5^{2}\mathrm{d}x
2-இன் அடுக்கு \sqrt{x}-ஐ கணக்கிட்டு, x-ஐப் பெறவும்.
\int x-25\mathrm{d}x
2-இன் அடுக்கு 5-ஐ கணக்கிட்டு, 25-ஐப் பெறவும்.
\int x\mathrm{d}x+\int -25\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
\frac{x^{2}}{2}+\int -25\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{2}}{2}-ஐ \int x\mathrm{d}x-ஆக மாற்றவும்.
\frac{x^{2}}{2}-25x
பொதுவான தொகையீடுகள் விதியின் அட்டவணை \int a\mathrm{d}x=ax-ஐப் பயன்படுத்தி -25-இன் தொகையீட்டைக் கண்டுபிடிக்கவும்.
\frac{x^{2}}{2}-25x+С
f\left(x\right)-இன் எதிர்வகைக்கெழுவாக F\left(x\right) இருக்கிறது எனில், f\left(x\right)-இன் அனைத்து எதிர்வகைக்கெழுக்களின் தொகுப்பு, F\left(x\right)+C-ஆள் வழங்கப்படும். எனவே முடிவில் தொகையீட்டு மாறிலி C\in \mathrm{R}-ஐச் சேர்க்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}