பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int x^{2}\left(x^{3}+3x^{2}+3x+1\right)\mathrm{d}x
\left(x+1\right)^{3}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} பயன்படுத்தவும்.
\int x^{5}+3x^{4}+3x^{3}+x^{2}\mathrm{d}x
x^{2}-ஐ x^{3}+3x^{2}+3x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int x^{5}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
\int x^{5}\mathrm{d}x+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
\frac{x^{6}}{6}+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{6}}{6}-ஐ \int x^{5}\mathrm{d}x-ஆக மாற்றவும்.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{5}}{5}-ஐ \int x^{4}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{5}}{5}-ஐ 3 முறை பெருக்கவும்.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{4}}{4}-ஐ \int x^{3}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{4}}{4}-ஐ 3 முறை பெருக்கவும்.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\frac{x^{3}}{3}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{3}}{3}-ஐ \int x^{2}\mathrm{d}x-ஆக மாற்றவும்.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}
எளிமையாக்கவும்.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}+С
f\left(x\right)-இன் எதிர்வகைக்கெழுவாக F\left(x\right) இருக்கிறது எனில், f\left(x\right)-இன் அனைத்து எதிர்வகைக்கெழுக்களின் தொகுப்பு, F\left(x\right)+C-ஆள் வழங்கப்படும். எனவே முடிவில் தொகையீட்டு மாறிலி C\in \mathrm{R}-ஐச் சேர்க்கவும்.