பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int x^{3}+2x+1\mathrm{d}x
முதலில் வரையறுக்கப்படாத தொகையீட்டை மதிப்பிடவும்.
\int x^{3}\mathrm{d}x+\int 2x\mathrm{d}x+\int 1\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x+\int 1\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
\frac{x^{4}}{4}+2\int x\mathrm{d}x+\int 1\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{4}}{4}-ஐ \int x^{3}\mathrm{d}x-ஆக மாற்றவும்.
\frac{x^{4}}{4}+x^{2}+\int 1\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{2}}{2}-ஐ \int x\mathrm{d}x-ஆக மாற்றவும். \frac{x^{2}}{2}-ஐ 2 முறை பெருக்கவும்.
\frac{x^{4}}{4}+x^{2}+x
பொதுவான தொகையீடுகள் விதியின் அட்டவணை \int a\mathrm{d}x=ax-ஐப் பயன்படுத்தி 1-இன் தொகையீட்டைக் கண்டுபிடிக்கவும்.
\frac{9^{4}}{4}+9^{2}+9-\left(\frac{4^{4}}{4}+4^{2}+4\right)
தீர்மானமான தொகையீடு என்பது தொகையீட்டின் அதிகபட்ச வரம்பில் மதிப்பிடப்பட்ட எக்ஸ்பிரஷனின் எதிர்வகைக்கெழுவை தொகையீட்டின் குறைந்தபட்ச வரம்பில் மதிப்பிடப்பட்ட எதிர்வகைக்கெழுவைக் கழிப்பதாகும்.
\frac{6585}{4}
எளிமையாக்கவும்.