பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int _{1}^{2}\left(\left(x^{3}\right)^{2}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
\left(x^{3}+5\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{2}=a^{2}+2ab+b^{2} பயன்படுத்தவும்.
\int _{1}^{2}\left(x^{6}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 6-ஐப் பெற, 3 மற்றும் 2-ஐப் பெருக்கவும்.
\int _{1}^{2}\left(3x^{6}+30x^{3}+75\right)x^{2}\mathrm{d}x
x^{6}+10x^{3}+25-ஐ 3-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int _{1}^{2}3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
3x^{6}+30x^{3}+75-ஐ x^{2}-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\int 3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
முதலில் வரையறுக்கப்படாத தொகையீட்டை மதிப்பிடவும்.
\int 3x^{8}\mathrm{d}x+\int 30x^{5}\mathrm{d}x+\int 75x^{2}\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
3\int x^{8}\mathrm{d}x+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
\frac{x^{9}}{3}+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{9}}{9}-ஐ \int x^{8}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{9}}{9}-ஐ 3 முறை பெருக்கவும்.
\frac{x^{9}}{3}+5x^{6}+75\int x^{2}\mathrm{d}x
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{6}}{6}-ஐ \int x^{5}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{6}}{6}-ஐ 30 முறை பெருக்கவும்.
\frac{x^{9}}{3}+5x^{6}+25x^{3}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{3}}{3}-ஐ \int x^{2}\mathrm{d}x-ஆக மாற்றவும். \frac{x^{3}}{3}-ஐ 75 முறை பெருக்கவும்.
25\times 2^{3}+5\times 2^{6}+\frac{2^{9}}{3}-\left(25\times 1^{3}+5\times 1^{6}+\frac{1^{9}}{3}\right)
தீர்மானமான தொகையீடு என்பது தொகையீட்டின் அதிகபட்ச வரம்பில் மதிப்பிடப்பட்ட எக்ஸ்பிரஷனின் எதிர்வகைக்கெழுவை தொகையீட்டின் குறைந்தபட்ச வரம்பில் மதிப்பிடப்பட்ட எதிர்வகைக்கெழுவைக் கழிப்பதாகும்.
\frac{1981}{3}
எளிமையாக்கவும்.