பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int \frac{1}{\sqrt{x}}-x\mathrm{d}x
முதலில் வரையறுக்கப்படாத தொகையீட்டை மதிப்பிடவும்.
\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int -x\mathrm{d}x
கூடுதல் காலத்தை, காலத்தால் தொகையிடவும்.
\int \frac{1}{\sqrt{x}}\mathrm{d}x-\int x\mathrm{d}x
ஒவ்வொரு காலத்திலும் மாறிலியையும் காரணிப்படுத்தவும்.
2\sqrt{x}-\int x\mathrm{d}x
\frac{1}{\sqrt{x}} என்பதை x^{-\frac{1}{2}} என மீண்டும் எழுதவும். k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{\frac{1}{2}}}{\frac{1}{2}}-ஐ \int x^{-\frac{1}{2}}\mathrm{d}x-ஆக மாற்றவும். எளிமைப்படுத்தி, அடுக்குக்குறியிலிருந்து சமதொடுகோட்டு வடிவத்திற்கு மாற்றவும்.
2\sqrt{x}-\frac{x^{2}}{2}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{2}}{2}-ஐ \int x\mathrm{d}x-ஆக மாற்றவும். \frac{x^{2}}{2}-ஐ -1 முறை பெருக்கவும்.
2\times 2^{\frac{1}{2}}-\frac{2^{2}}{2}-\left(2\times 1^{\frac{1}{2}}-\frac{1^{2}}{2}\right)
தீர்மானமான தொகையீடு என்பது தொகையீட்டின் அதிகபட்ச வரம்பில் மதிப்பிடப்பட்ட எக்ஸ்பிரஷனின் எதிர்வகைக்கெழுவை தொகையீட்டின் குறைந்தபட்ச வரம்பில் மதிப்பிடப்பட்ட எதிர்வகைக்கெழுவைக் கழிப்பதாகும்.
2\sqrt{2}-\frac{7}{2}
எளிமையாக்கவும்.