பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\int _{0}^{1}2^{3}x\times 2x\mathrm{d}x
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும். 3-ஐப் பெற, 2 மற்றும் 1-ஐக் கூட்டவும்.
\int _{0}^{1}2^{4}xx\mathrm{d}x
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும். 4-ஐப் பெற, 3 மற்றும் 1-ஐக் கூட்டவும்.
\int _{0}^{1}2^{4}x^{2}\mathrm{d}x
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
\int _{0}^{1}16x^{2}\mathrm{d}x
4-இன் அடுக்கு 2-ஐ கணக்கிட்டு, 16-ஐப் பெறவும்.
\int 16x^{2}\mathrm{d}x
முதலில் வரையறுக்கப்படாத தொகையீட்டை மதிப்பிடவும்.
16\int x^{2}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x-ஐப் பயன்படுத்தி மாறிலியைக் காரணிப்படுத்தவும்.
\frac{16x^{3}}{3}
k\neq -1-க்காக \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} இருப்பதால், \frac{x^{3}}{3}-ஐ \int x^{2}\mathrm{d}x-ஆக மாற்றவும்.
\frac{16}{3}\times 1^{3}-\frac{16}{3}\times 0^{3}
தீர்மானமான தொகையீடு என்பது தொகையீட்டின் அதிகபட்ச வரம்பில் மதிப்பிடப்பட்ட எக்ஸ்பிரஷனின் எதிர்வகைக்கெழுவை தொகையீட்டின் குறைந்தபட்ச வரம்பில் மதிப்பிடப்பட்ட எதிர்வகைக்கெழுவைக் கழிப்பதாகும்.
\frac{16}{3}
எளிமையாக்கவும்.