பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x\left(9-3x\right)=15-9x
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் 9,9x-இன் சிறிய பொது பெருக்கியான 9x-ஆல் பெருக்கவும்.
9x-3x^{2}=15-9x
x-ஐ 9-3x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
9x-3x^{2}-15=-9x
இரு பக்கங்களில் இருந்தும் 15-ஐக் கழிக்கவும்.
9x-3x^{2}-15+9x=0
இரண்டு பக்கங்களிலும் 9x-ஐச் சேர்க்கவும்.
18x-3x^{2}-15=0
9x மற்றும் 9x-ஐ இணைத்தால், தீர்வு 18x.
-3x^{2}+18x-15=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -3, b-க்குப் பதிலாக 18 மற்றும் c-க்குப் பதிலாக -15-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-18±\sqrt{324-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
18-ஐ வர்க்கமாக்கவும்.
x=\frac{-18±\sqrt{324+12\left(-15\right)}}{2\left(-3\right)}
-3-ஐ -4 முறை பெருக்கவும்.
x=\frac{-18±\sqrt{324-180}}{2\left(-3\right)}
-15-ஐ 12 முறை பெருக்கவும்.
x=\frac{-18±\sqrt{144}}{2\left(-3\right)}
-180-க்கு 324-ஐக் கூட்டவும்.
x=\frac{-18±12}{2\left(-3\right)}
144-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-18±12}{-6}
-3-ஐ 2 முறை பெருக்கவும்.
x=-\frac{6}{-6}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-18±12}{-6}-ஐத் தீர்க்கவும். 12-க்கு -18-ஐக் கூட்டவும்.
x=1
-6-ஐ -6-ஆல் வகுக்கவும்.
x=-\frac{30}{-6}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-18±12}{-6}-ஐத் தீர்க்கவும். -18–இலிருந்து 12–ஐக் கழிக்கவும்.
x=5
-30-ஐ -6-ஆல் வகுக்கவும்.
x=1 x=5
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x\left(9-3x\right)=15-9x
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் 9,9x-இன் சிறிய பொது பெருக்கியான 9x-ஆல் பெருக்கவும்.
9x-3x^{2}=15-9x
x-ஐ 9-3x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
9x-3x^{2}+9x=15
இரண்டு பக்கங்களிலும் 9x-ஐச் சேர்க்கவும்.
18x-3x^{2}=15
9x மற்றும் 9x-ஐ இணைத்தால், தீர்வு 18x.
-3x^{2}+18x=15
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{-3x^{2}+18x}{-3}=\frac{15}{-3}
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
x^{2}+\frac{18}{-3}x=\frac{15}{-3}
-3-ஆல் வகுத்தல் -3-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-6x=\frac{15}{-3}
18-ஐ -3-ஆல் வகுக்கவும்.
x^{2}-6x=-5
15-ஐ -3-ஆல் வகுக்கவும்.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
-3-ஐப் பெற, x உறுப்பின் ஈவான -6-ஐ 2-ஆல் வகுக்கவும். பிறகு -3-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-6x+9=-5+9
-3-ஐ வர்க்கமாக்கவும்.
x^{2}-6x+9=4
9-க்கு -5-ஐக் கூட்டவும்.
\left(x-3\right)^{2}=4
காரணி x^{2}-6x+9. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-3=2 x-3=-2
எளிமையாக்கவும்.
x=5 x=1
சமன்பாட்டின் இரு பக்கங்களிலும் 3-ஐக் கூட்டவும்.