பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். x+2 மற்றும் x-3-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x-3\right)\left(x+2\right) ஆகும். \frac{x-3}{x-3}-ஐ \frac{2}{x+2} முறை பெருக்கவும். \frac{x+2}{x+2}-ஐ \frac{7}{x-3} முறை பெருக்கவும்.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} மற்றும் \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
2\left(x-3\right)-7\left(x+2\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
2x-6-7x-14-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{-5x-20}{x^{2}-x-6}
\left(x-3\right)\left(x+2\right)-ஐ விரிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். x+2 மற்றும் x-3-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x-3\right)\left(x+2\right) ஆகும். \frac{x-3}{x-3}-ஐ \frac{2}{x+2} முறை பெருக்கவும். \frac{x+2}{x+2}-ஐ \frac{7}{x-3} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} மற்றும் \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
2\left(x-3\right)-7\left(x+2\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
2x-6-7x-14-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
x-3-இன் ஒவ்வொரு கலத்தையும் x+2-இன் ஒவ்வொரு கலத்தால் பெருக்குவதன் மூலம் பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
2x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -x.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
எளிமையாக்கவும்.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
-5x^{0}-ஐ x^{2}-x^{1}-6 முறை பெருக்கவும்.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
2x^{1}-x^{0}-ஐ -5x^{1}-20 முறை பெருக்கவும்.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
எளிமையாக்கவும்.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
t, t\times 1=t மற்றும் 1t=t எந்தவொரு சொல்லுக்கும்.