x-க்காகத் தீர்க்கவும்
x=-1
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -6,3 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x+6,x-3,x^{2}+3x-18-இன் சிறிய பொது பெருக்கியான \left(x-3\right)\left(x+6\right)-ஆல் பெருக்கவும்.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
x-3 மற்றும் x-3-ஐப் பெருக்கவும், தீர்வு \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6-ஐ x-2-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x^{2}-6x+9+4x-12=x^{2}
x^{2} மற்றும் x^{2}-ஐ இணைத்தால், தீர்வு 2x^{2}.
2x^{2}-2x+9-12=x^{2}
-6x மற்றும் 4x-ஐ இணைத்தால், தீர்வு -2x.
2x^{2}-2x-3=x^{2}
9-இலிருந்து 12-ஐக் கழிக்கவும், தீர்வு -3.
2x^{2}-2x-3-x^{2}=0
இரு பக்கங்களில் இருந்தும் x^{2}-ஐக் கழிக்கவும்.
x^{2}-2x-3=0
2x^{2} மற்றும் -x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
a+b=-2 ab=-3
சமன்பாட்டைத் தீர்க்க, x^{2}-2x-3 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
a=-3 b=1
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். அத்தகைய ஜோடியானது அமைப்புத் தீர்வு மட்டுமே.
\left(x-3\right)\left(x+1\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
x=3 x=-1
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-3=0 மற்றும் x+1=0-ஐத் தீர்க்கவும்.
x=-1
மாறி x ஆனது 3-க்குச் சமமாக இருக்க முடியாது.
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -6,3 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x+6,x-3,x^{2}+3x-18-இன் சிறிய பொது பெருக்கியான \left(x-3\right)\left(x+6\right)-ஆல் பெருக்கவும்.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
x-3 மற்றும் x-3-ஐப் பெருக்கவும், தீர்வு \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6-ஐ x-2-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x^{2}-6x+9+4x-12=x^{2}
x^{2} மற்றும் x^{2}-ஐ இணைத்தால், தீர்வு 2x^{2}.
2x^{2}-2x+9-12=x^{2}
-6x மற்றும் 4x-ஐ இணைத்தால், தீர்வு -2x.
2x^{2}-2x-3=x^{2}
9-இலிருந்து 12-ஐக் கழிக்கவும், தீர்வு -3.
2x^{2}-2x-3-x^{2}=0
இரு பக்கங்களில் இருந்தும் x^{2}-ஐக் கழிக்கவும்.
x^{2}-2x-3=0
2x^{2} மற்றும் -x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
a+b=-2 ab=1\left(-3\right)=-3
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx-3-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
a=-3 b=1
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். அத்தகைய ஜோடியானது அமைப்புத் தீர்வு மட்டுமே.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 என்பதை \left(x^{2}-3x\right)+\left(x-3\right) என மீண்டும் எழுதவும்.
x\left(x-3\right)+x-3
x^{2}-3x-இல் x ஐக் காரணிப்படுத்தவும்.
\left(x-3\right)\left(x+1\right)
பரவல் பண்பைப் பயன்படுத்தி x-3 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=3 x=-1
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-3=0 மற்றும் x+1=0-ஐத் தீர்க்கவும்.
x=-1
மாறி x ஆனது 3-க்குச் சமமாக இருக்க முடியாது.
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -6,3 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x+6,x-3,x^{2}+3x-18-இன் சிறிய பொது பெருக்கியான \left(x-3\right)\left(x+6\right)-ஆல் பெருக்கவும்.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
x-3 மற்றும் x-3-ஐப் பெருக்கவும், தீர்வு \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6-ஐ x-2-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x^{2}-6x+9+4x-12=x^{2}
x^{2} மற்றும் x^{2}-ஐ இணைத்தால், தீர்வு 2x^{2}.
2x^{2}-2x+9-12=x^{2}
-6x மற்றும் 4x-ஐ இணைத்தால், தீர்வு -2x.
2x^{2}-2x-3=x^{2}
9-இலிருந்து 12-ஐக் கழிக்கவும், தீர்வு -3.
2x^{2}-2x-3-x^{2}=0
இரு பக்கங்களில் இருந்தும் x^{2}-ஐக் கழிக்கவும்.
x^{2}-2x-3=0
2x^{2} மற்றும் -x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -2 மற்றும் c-க்குப் பதிலாக -3-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
-2-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-3-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
12-க்கு 4-ஐக் கூட்டவும்.
x=\frac{-\left(-2\right)±4}{2}
16-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{2±4}{2}
-2-க்கு எதிரில் இருப்பது 2.
x=\frac{6}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{2±4}{2}-ஐத் தீர்க்கவும். 4-க்கு 2-ஐக் கூட்டவும்.
x=3
6-ஐ 2-ஆல் வகுக்கவும்.
x=-\frac{2}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{2±4}{2}-ஐத் தீர்க்கவும். 2–இலிருந்து 4–ஐக் கழிக்கவும்.
x=-1
-2-ஐ 2-ஆல் வகுக்கவும்.
x=3 x=-1
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x=-1
மாறி x ஆனது 3-க்குச் சமமாக இருக்க முடியாது.
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -6,3 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x+6,x-3,x^{2}+3x-18-இன் சிறிய பொது பெருக்கியான \left(x-3\right)\left(x+6\right)-ஆல் பெருக்கவும்.
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
x-3 மற்றும் x-3-ஐப் பெருக்கவும், தீர்வு \left(x-3\right)^{2}.
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6-ஐ x-2-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x^{2}-6x+9+4x-12=x^{2}
x^{2} மற்றும் x^{2}-ஐ இணைத்தால், தீர்வு 2x^{2}.
2x^{2}-2x+9-12=x^{2}
-6x மற்றும் 4x-ஐ இணைத்தால், தீர்வு -2x.
2x^{2}-2x-3=x^{2}
9-இலிருந்து 12-ஐக் கழிக்கவும், தீர்வு -3.
2x^{2}-2x-3-x^{2}=0
இரு பக்கங்களில் இருந்தும் x^{2}-ஐக் கழிக்கவும்.
x^{2}-2x-3=0
2x^{2} மற்றும் -x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
x^{2}-2x=3
இரண்டு பக்கங்களிலும் 3-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
x^{2}-2x+1=3+1
-1-ஐப் பெற, x உறுப்பின் ஈவான -2-ஐ 2-ஆல் வகுக்கவும். பிறகு -1-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-2x+1=4
1-க்கு 3-ஐக் கூட்டவும்.
\left(x-1\right)^{2}=4
காரணி x^{2}-2x+1. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-1=2 x-1=-2
எளிமையாக்கவும்.
x=3 x=-1
சமன்பாட்டின் இரு பக்கங்களிலும் 1-ஐக் கூட்டவும்.
x=-1
மாறி x ஆனது 3-க்குச் சமமாக இருக்க முடியாது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}