பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
சமன்பாட்டின் இரண்டு பக்கங்களிலும் 3,4,12-இன் சிறிய பொது பெருக்கியான 12-ஆல் பெருக்கவும்.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
4x-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-4x-3x^{2}-3x+3x+4=0
-3x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x^{2}-4x-3x+3x+4=0
4x^{2} மற்றும் -3x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
x^{2}-7x+3x+4=0
-4x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -7x.
x^{2}-4x+4=0
-7x மற்றும் 3x-ஐ இணைத்தால், தீர்வு -4x.
a+b=-4 ab=4
சமன்பாட்டைத் தீர்க்க, x^{2}-4x+4 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-4 -2,-2
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 4 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-4=-5 -2-2=-4
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-2 b=-2
-4 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x-2\right)\left(x-2\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
\left(x-2\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
x=2
சமன்பாட்டுத் தீர்வைக் கண்டறிய, x-2=0-ஐத் தீர்க்கவும்.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
சமன்பாட்டின் இரண்டு பக்கங்களிலும் 3,4,12-இன் சிறிய பொது பெருக்கியான 12-ஆல் பெருக்கவும்.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
4x-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-4x-3x^{2}-3x+3x+4=0
-3x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x^{2}-4x-3x+3x+4=0
4x^{2} மற்றும் -3x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
x^{2}-7x+3x+4=0
-4x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -7x.
x^{2}-4x+4=0
-7x மற்றும் 3x-ஐ இணைத்தால், தீர்வு -4x.
a+b=-4 ab=1\times 4=4
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx+4-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-4 -2,-2
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 4 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-4=-5 -2-2=-4
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-2 b=-2
-4 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-2x\right)+\left(-2x+4\right)
x^{2}-4x+4 என்பதை \left(x^{2}-2x\right)+\left(-2x+4\right) என மீண்டும் எழுதவும்.
x\left(x-2\right)-2\left(x-2\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் -2-ஐக் காரணிப்படுத்தவும்.
\left(x-2\right)\left(x-2\right)
பரவல் பண்பைப் பயன்படுத்தி x-2 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
\left(x-2\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
x=2
சமன்பாட்டுத் தீர்வைக் கண்டறிய, x-2=0-ஐத் தீர்க்கவும்.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
சமன்பாட்டின் இரண்டு பக்கங்களிலும் 3,4,12-இன் சிறிய பொது பெருக்கியான 12-ஆல் பெருக்கவும்.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
4x-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-4x-3x^{2}-3x+3x+4=0
-3x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x^{2}-4x-3x+3x+4=0
4x^{2} மற்றும் -3x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
x^{2}-7x+3x+4=0
-4x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -7x.
x^{2}-4x+4=0
-7x மற்றும் 3x-ஐ இணைத்தால், தீர்வு -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -4 மற்றும் c-க்குப் பதிலாக 4-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
-4-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
4-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
-16-க்கு 16-ஐக் கூட்டவும்.
x=-\frac{-4}{2}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{4}{2}
-4-க்கு எதிரில் இருப்பது 4.
x=2
4-ஐ 2-ஆல் வகுக்கவும்.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
சமன்பாட்டின் இரண்டு பக்கங்களிலும் 3,4,12-இன் சிறிய பொது பெருக்கியான 12-ஆல் பெருக்கவும்.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
4x-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-4x-3x^{2}-3x+3x+4=0
-3x-ஐ x+1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x^{2}-4x-3x+3x+4=0
4x^{2} மற்றும் -3x^{2}-ஐ இணைத்தால், தீர்வு x^{2}.
x^{2}-7x+3x+4=0
-4x மற்றும் -3x-ஐ இணைத்தால், தீர்வு -7x.
x^{2}-4x+4=0
-7x மற்றும் 3x-ஐ இணைத்தால், தீர்வு -4x.
\left(x-2\right)^{2}=0
காரணி x^{2}-4x+4. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-2=0 x-2=0
எளிமையாக்கவும்.
x=2 x=2
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
x=2
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.