பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)}
காரணி x^{2}+10x+24. காரணி x^{2}+6x+8.
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \left(x+4\right)\left(x+6\right) மற்றும் \left(x+2\right)\left(x+4\right)-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x+2\right)\left(x+4\right)\left(x+6\right) ஆகும். \frac{x+2}{x+2}-ஐ \frac{x}{\left(x+4\right)\left(x+6\right)} முறை பெருக்கவும். \frac{x+6}{x+6}-ஐ \frac{4}{\left(x+2\right)\left(x+4\right)} முறை பெருக்கவும்.
\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} மற்றும் \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x\left(x+2\right)-4\left(x+6\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x^{2}+2x-4x-24-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-இல் ஏற்கனவே காரணிப்படுத்தாத கோவைகளை காரணிப்படுத்தவும்.
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
பகுதி மற்றும் தொகுதி இரண்டிலும் x+4-ஐ ரத்துசெய்யவும்.
\frac{x-6}{x^{2}+8x+12}
\left(x+2\right)\left(x+6\right)-ஐ விரிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)})
காரணி x^{2}+10x+24. காரணி x^{2}+6x+8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \left(x+4\right)\left(x+6\right) மற்றும் \left(x+2\right)\left(x+4\right)-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x+2\right)\left(x+4\right)\left(x+6\right) ஆகும். \frac{x+2}{x+2}-ஐ \frac{x}{\left(x+4\right)\left(x+6\right)} முறை பெருக்கவும். \frac{x+6}{x+6}-ஐ \frac{4}{\left(x+2\right)\left(x+4\right)} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} மற்றும் \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x\left(x+2\right)-4\left(x+6\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x^{2}+2x-4x-24-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-இல் ஏற்கனவே காரணிப்படுத்தாத கோவைகளை காரணிப்படுத்தவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{\left(x+2\right)\left(x+6\right)})
பகுதி மற்றும் தொகுதி இரண்டிலும் x+4-ஐ ரத்துசெய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{x^{2}+8x+12})
x+2-ஐ x+6-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{\left(x^{2}+8x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-6)-\left(x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+8x^{1}+12)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(x^{2}+8x^{1}+12\right)x^{1-1}-\left(x^{1}-6\right)\left(2x^{2-1}+8x^{1-1}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(x^{2}+8x^{1}+12\right)x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
எளிமையாக்கவும்.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
x^{0}-ஐ x^{2}+8x^{1}+12 முறை பெருக்கவும்.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\times 8x^{0}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
2x^{1}+8x^{0}-ஐ x^{1}-6 முறை பெருக்கவும்.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{1+1}+8x^{1}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{2}+8x^{1}-12x^{1}-48x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
எளிமையாக்கவும்.
\frac{-x^{2}+12x^{1}+60x^{0}}{\left(x^{2}+8x^{1}+12\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{-x^{2}+12x+60x^{0}}{\left(x^{2}+8x+12\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{-x^{2}+12x+60\times 1}{\left(x^{2}+8x+12\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.
\frac{-x^{2}+12x+60}{\left(x^{2}+8x+12\right)^{2}}
t, t\times 1=t மற்றும் 1t=t எந்தவொரு சொல்லுக்கும்.