மதிப்பிடவும்
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
காரணி
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
காரணி x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \left(x+y\right)\left(x-y\right) மற்றும் x+y-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x+y\right)\left(x-y\right) ஆகும். \frac{x-y}{x-y}-ஐ \frac{x}{x+y} முறை பெருக்கவும்.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)} மற்றும் \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
x^{2}-x\left(x-y\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
x^{2}-x^{2}+xy-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
காரணி 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \left(x+y\right)\left(x-y\right) மற்றும் 2\left(x-y\right)-க்கு இடையிலான மீச்சிறு பெருக்கி 2\left(x+y\right)\left(x-y\right) ஆகும். \frac{2}{2}-ஐ \frac{xy}{\left(x+y\right)\left(x-y\right)} முறை பெருக்கவும். \frac{x+y}{x+y}-ஐ \frac{y}{2\left(x-y\right)} முறை பெருக்கவும்.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
\frac{2xy}{2\left(x+y\right)\left(x-y\right)} மற்றும் \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
2xy+y\left(x+y\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
2xy+xy+y^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
காரணி 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} மற்றும் \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
y^{2}+3xy-y^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{3xy}{2x^{2}-2y^{2}}
2\left(x+y\right)\left(x-y\right)-ஐ விரிக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}