மதிப்பிடவும்
\frac{6}{v}
v குறித்து வகையிடவும்
-\frac{6}{v^{2}}
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(54v^{4}\right)^{1}\times \frac{1}{9v^{5}}
கோவையை எளிமையாக்க, அடுக்குகளின் விதிகளைப் பயன்படுத்தவும்.
54^{1}\left(v^{4}\right)^{1}\times \frac{1}{9}\times \frac{1}{v^{5}}
இரண்டு அல்லது அதிக எண்களின் பெருக்கத்தை ஒரு அடுக்கிற்கு உயர்த்த, ஒவ்வொரு எண்ணையும் அந்த அடுக்கிற்கு உயர்த்தி, அவற்றின் பெருக்கத்தை எடுக்கவும்.
54^{1}\times \frac{1}{9}\left(v^{4}\right)^{1}\times \frac{1}{v^{5}}
பெருக்கத்தின் பரிமாற்றக் குணத்தைப் பயன்படுத்தவும்.
54^{1}\times \frac{1}{9}v^{4}v^{5\left(-1\right)}
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும்.
54^{1}\times \frac{1}{9}v^{4}v^{-5}
-1-ஐ 5 முறை பெருக்கவும்.
54^{1}\times \frac{1}{9}v^{4-5}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
54^{1}\times \frac{1}{9}\times \frac{1}{v}
4 மற்றும் -5 அடுக்கு மதிப்புகளைக் கூட்டவும்.
54\times \frac{1}{9}\times \frac{1}{v}
54-ஐ 1 என்ற அடுக்கிற்கு உயர்த்தவும்.
6\times \frac{1}{v}
\frac{1}{9}-ஐ 54 முறை பெருக்கவும்.
\frac{54^{1}v^{4}}{9^{1}v^{5}}
கோவையை எளிமையாக்க, அடுக்குகளின் விதிகளைப் பயன்படுத்தவும்.
\frac{54^{1}v^{4-5}}{9^{1}}
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{54^{1}\times \frac{1}{v}}{9^{1}}
4–இலிருந்து 5–ஐக் கழிக்கவும்.
6\times \frac{1}{v}
54-ஐ 9-ஆல் வகுக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{54}{9}v^{4-5})
அதே அடியின் அடுக்குகளைப் பிரிப்பதற்கு, தொகுதியின் அடுக்கிலிருந்து பகுதியின் அடுக்கைக் கழிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}v}(6\times \frac{1}{v})
எண்கணிதத்தைச் செய்யவும்.
-6v^{-1-1}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
-6v^{-2}
எண்கணிதத்தைச் செய்யவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}