பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
மெய்யெண் பகுதி
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)}
பகுதி -1-5i-இன் சிக்கலான இணைஇயவின் முலம் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் பெருக்கவும்.
\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}}
பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+3i\right)\left(-1-5i\right)}{26}
விளக்கத்தின்படி, i^{2} என்பது -1 ஆகும். பகுதியைக் கணக்கிடவும்.
\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)i^{2}}{26}
ஈருறுப்புகளைப் பெருக்குவது போன்றே, கலப்பு எண்கள் 4+3i மற்றும் -1-5iஐப் பெருக்கவும்.
\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right)}{26}
விளக்கத்தின்படி, i^{2} என்பது -1 ஆகும்.
\frac{-4-20i-3i+15}{26}
4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-4+15+\left(-20-3\right)i}{26}
-4-20i-3i+15 இல் மெய் மற்றும் கற்பனை பாகங்களை இணைக்கவும்.
\frac{11-23i}{26}
-4+15+\left(-20-3\right)i இல் கூட்டல் செயல்பாட்டைச் செய்யவும்.
\frac{11}{26}-\frac{23}{26}i
\frac{11}{26}-\frac{23}{26}i-ஐப் பெற, 26-ஐ 11-23i-ஆல் வகுக்கவும்.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1+5i\right)\left(-1-5i\right)})
பகுதியின் சிக்கலான இணைஇயவியான -1-5i முலம், \frac{4+3i}{-1+5i}-இன் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் பெருக்கவும்.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{\left(-1\right)^{2}-5^{2}i^{2}})
பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+3i\right)\left(-1-5i\right)}{26})
விளக்கத்தின்படி, i^{2} என்பது -1 ஆகும். பகுதியைக் கணக்கிடவும்.
Re(\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)i^{2}}{26})
ஈருறுப்புகளைப் பெருக்குவது போன்றே, கலப்பு எண்கள் 4+3i மற்றும் -1-5iஐப் பெருக்கவும்.
Re(\frac{4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right)}{26})
விளக்கத்தின்படி, i^{2} என்பது -1 ஆகும்.
Re(\frac{-4-20i-3i+15}{26})
4\left(-1\right)+4\times \left(-5i\right)+3i\left(-1\right)+3\left(-5\right)\left(-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
Re(\frac{-4+15+\left(-20-3\right)i}{26})
-4-20i-3i+15 இல் மெய் மற்றும் கற்பனை பாகங்களை இணைக்கவும்.
Re(\frac{11-23i}{26})
-4+15+\left(-20-3\right)i இல் கூட்டல் செயல்பாட்டைச் செய்யவும்.
Re(\frac{11}{26}-\frac{23}{26}i)
\frac{11}{26}-\frac{23}{26}i-ஐப் பெற, 26-ஐ 11-23i-ஆல் வகுக்கவும்.
\frac{11}{26}
\frac{11}{26}-\frac{23}{26}i இன் மெய்ப் பகுதி \frac{11}{26} ஆகும்.