பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். 2x-1 மற்றும் x+2-க்கு இடையிலான மீச்சிறு பெருக்கி \left(2x-1\right)\left(x+2\right) ஆகும். \frac{x+2}{x+2}-ஐ \frac{3}{2x-1} முறை பெருக்கவும். \frac{2x-1}{2x-1}-ஐ \frac{1}{x+2} முறை பெருக்கவும்.
\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)}
\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} மற்றும் \frac{2x-1}{\left(2x-1\right)\left(x+2\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)}
3\left(x+2\right)-\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{x+7}{\left(2x-1\right)\left(x+2\right)}
3x+6-2x+1-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{x+7}{2x^{2}+3x-2}
\left(2x-1\right)\left(x+2\right)-ஐ விரிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். 2x-1 மற்றும் x+2-க்கு இடையிலான மீச்சிறு பெருக்கி \left(2x-1\right)\left(x+2\right) ஆகும். \frac{x+2}{x+2}-ஐ \frac{3}{2x-1} முறை பெருக்கவும். \frac{2x-1}{2x-1}-ஐ \frac{1}{x+2} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)})
\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} மற்றும் \frac{2x-1}{\left(2x-1\right)\left(x+2\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)})
3\left(x+2\right)-\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{\left(2x-1\right)\left(x+2\right)})
3x+6-2x+1-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+4x-x-2})
2x-1-இன் ஒவ்வொரு கலத்தையும் x+2-இன் ஒவ்வொரு கலத்தால் பெருக்குவதன் மூலம் பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+3x-2})
4x மற்றும் -x-ஐ இணைத்தால், தீர்வு 3x.
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{1-1}-\left(x^{1}+7\right)\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
எளிமையாக்கவும்.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
x^{0}-ஐ 2x^{2}+3x^{1}-2 முறை பெருக்கவும்.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}\times 4x^{1}+x^{1}\times 3x^{0}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
4x^{1}+3x^{0}-ஐ x^{1}+7 முறை பெருக்கவும்.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{1+1}+3x^{1}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{2}+3x^{1}+28x^{1}+21x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
எளிமையாக்கவும்.
\frac{-2x^{2}-28x^{1}-23x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{-2x^{2}-28x-23x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{-2x^{2}-28x-23}{\left(2x^{2}+3x-2\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.