பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1}
காரணி 1+x-2x^{2}.
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \left(-x+1\right)\left(2x+1\right) மற்றும் x-1-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x-1\right)\left(2x+1\right) ஆகும். \frac{-1}{-1}-ஐ \frac{3}{\left(-x+1\right)\left(2x+1\right)} முறை பெருக்கவும். \frac{2x+1}{2x+1}-ஐ \frac{x}{x-1} முறை பெருக்கவும்.
\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} மற்றும் \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}
3\left(-1\right)+x\left(2x+1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)}
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}-இல் ஏற்கனவே காரணிப்படுத்தாத கோவைகளை காரணிப்படுத்தவும்.
\frac{2x+3}{2x+1}
பகுதி மற்றும் தொகுதி இரண்டிலும் x-1-ஐ ரத்துசெய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1})
காரணி 1+x-2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \left(-x+1\right)\left(2x+1\right) மற்றும் x-1-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x-1\right)\left(2x+1\right) ஆகும். \frac{-1}{-1}-ஐ \frac{3}{\left(-x+1\right)\left(2x+1\right)} முறை பெருக்கவும். \frac{2x+1}{2x+1}-ஐ \frac{x}{x-1} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} மற்றும் \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)})
3\left(-1\right)+x\left(2x+1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)})
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}-இல் ஏற்கனவே காரணிப்படுத்தாத கோவைகளை காரணிப்படுத்தவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{2x+1})
பகுதி மற்றும் தொகுதி இரண்டிலும் x-1-ஐ ரத்துசெய்யவும்.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+3)-\left(2x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(2x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+3\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(2x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+3\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
எண்கணிதத்தைச் செய்யவும்.
\frac{2x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}\times 2x^{0}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
பங்கீட்டுக் குணத்தைப் பயன்படுத்தி விரிக்கவும்.
\frac{2\times 2x^{1}+2x^{0}-\left(2\times 2x^{1}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{4x^{1}+2x^{0}-\left(4x^{1}+6x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
எண்கணிதத்தைச் செய்யவும்.
\frac{4x^{1}+2x^{0}-4x^{1}-6x^{0}}{\left(2x^{1}+1\right)^{2}}
தேவையற்ற அடைப்புக்குறிகளை அகற்றவும்.
\frac{\left(4-4\right)x^{1}+\left(2-6\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{-4x^{0}}{\left(2x^{1}+1\right)^{2}}
4-இலிருந்து 4 மற்றும் 2-இலிருந்து 6-ஐக் கழிக்கவும்.
\frac{-4x^{0}}{\left(2x+1\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{-4}{\left(2x+1\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.