பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
Tick mark Image
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -4,\frac{1}{2},1,4 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் 16-x^{2},2x^{2}-3x+1,4-x-இன் சிறிய பொது பெருக்கியான \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right)-ஆல் பெருக்கவும்.
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}-ஐ 2x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2}-ஐ x^{2}+3x-4-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2}-ஐ x^{2}+3x-4-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} மற்றும் \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
-1-ஐ -1+x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
1-x-ஐ -1+2x-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
-1+3x-2x^{2}-ஐ 4+x-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
இரு பக்கங்களில் இருந்தும் -4-ஐக் கழிக்கவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
-4-க்கு எதிரில் இருப்பது 4.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
காரணி 2x^{2}-3x+1.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ 4 முறை பெருக்கவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
இரு பக்கங்களில் இருந்தும் 11x-ஐக் கழிக்கவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ -11x முறை பெருக்கவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
இரண்டு பக்கங்களிலும் 5x^{2}-ஐச் சேர்க்கவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ 5x^{2} முறை பெருக்கவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
இரண்டு பக்கங்களிலும் 2x^{3}-ஐச் சேர்க்கவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ 2x^{3} முறை பெருக்கவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
0=0
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு \frac{1}{2},1 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் \left(x-1\right)\left(2x-1\right)-ஆல் பெருக்கவும்.
x\in \mathrm{C}
எந்தவொரு x-க்கும் இது சரி.
x\in \mathrm{C}\setminus -4,\frac{1}{2},1,4
மாறி x ஆனது எந்தவொரு \frac{1}{2},1,-4,4 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது.
\left(-1+3x-2x^{2}\right)\left(2x-1\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -4,\frac{1}{2},1,4 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் 16-x^{2},2x^{2}-3x+1,4-x-இன் சிறிய பொது பெருக்கியான \left(x-4\right)\left(x-1\right)\left(2x-1\right)\left(x+4\right)-ஆல் பெருக்கவும்.
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}\left(2x-1\right)=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\left(-1+3x-2x^{2}\right)\times \frac{x^{2}+3x-4}{2x^{2}-3x+1}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
2\times \frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}-ஐ 2x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2}-ஐ x^{2}+3x-4-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\times \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{\left(-1+3x-2x^{2}\right)\left(x^{2}+3x-4\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}x-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1}-\frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
-1+3x-2x^{2}-ஐ x^{2}+3x-4-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
\frac{2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x}{2x^{2}-3x+1} மற்றும் \frac{16x^{2}-15x+4-3x^{3}-2x^{4}}{2x^{2}-3x+1} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
2\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right)x-\left(16x^{2}-15x+4-3x^{3}-2x^{4}\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-\left(-1+x\right)\left(-1+2x\right)\left(4+x\right)
32x^{3}-30x^{2}+8x-6x^{4}-4x^{5}-16x^{2}+15x-4+3x^{3}+2x^{4}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(1-x\right)\left(-1+2x\right)\left(4+x\right)
-1-ஐ -1+x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=\left(-1+3x-2x^{2}\right)\left(4+x\right)
1-x-ஐ -1+2x-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}=-4+11x-5x^{2}-2x^{3}
-1+3x-2x^{2}-ஐ 4+x-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}-\left(-4\right)=11x-5x^{2}-2x^{3}
இரு பக்கங்களில் இருந்தும் -4-ஐக் கழிக்கவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{2x^{2}-3x+1}+4=11x-5x^{2}-2x^{3}
-4-க்கு எதிரில் இருப்பது 4.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+4=11x-5x^{2}-2x^{3}
காரணி 2x^{2}-3x+1.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)}+\frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ 4 முறை பெருக்கவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{4\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+4\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=11x-5x^{2}-2x^{3}
35x^{3}-46x^{2}+23x-4x^{4}-4x^{5}-4+8x^{2}-4x-8x+4-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}-11x=-5x^{2}-2x^{3}
இரு பக்கங்களில் இருந்தும் 11x-ஐக் கழிக்கவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ -11x முறை பெருக்கவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{-11x\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-11x\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-5x^{2}-2x^{3}
35x^{3}-38x^{2}+11x-4x^{4}-4x^{5}-22x^{3}+11x^{2}+22x^{2}-11x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+5x^{2}=-2x^{3}
இரண்டு பக்கங்களிலும் 5x^{2}-ஐச் சேர்க்கவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ 5x^{2} முறை பெருக்கவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{5x^{2}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+5x^{2}\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}=-2x^{3}
13x^{3}-5x^{2}-4x^{4}-4x^{5}+10x^{4}-5x^{3}-10x^{3}+5x^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+2x^{3}=0
இரண்டு பக்கங்களிலும் 2x^{3}-ஐச் சேர்க்கவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)}+\frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}-ஐ 2x^{3} முறை பெருக்கவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}=0
\frac{-2x^{3}+6x^{4}-4x^{5}}{\left(x-1\right)\left(2x-1\right)} மற்றும் \frac{2x^{3}\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+2x^{3}\left(x-1\right)\left(2x-1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{0}{\left(x-1\right)\left(2x-1\right)}=0
-2x^{3}+6x^{4}-4x^{5}+4x^{5}-2x^{4}-4x^{4}+2x^{3}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
0=0
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு \frac{1}{2},1 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் \left(x-1\right)\left(2x-1\right)-ஆல் பெருக்கவும்.
x\in \mathrm{R}
எந்தவொரு x-க்கும் இது சரி.
x\in \mathrm{R}\setminus -4,\frac{1}{2},1,4
மாறி x ஆனது எந்தவொரு \frac{1}{2},1,-4,4 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது.