மதிப்பிடவும்
\frac{3\left(1-2a\right)}{9-4a^{2}}
a குறித்து வகையிடவும்
-\frac{6\left(4a^{2}-4a+9\right)}{\left(4a^{2}-9\right)^{2}}
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். 2a+3 மற்றும் 3-2a-க்கு இடையிலான மீச்சிறு பெருக்கி \left(-2a+3\right)\left(2a+3\right) ஆகும். \frac{-2a+3}{-2a+3}-ஐ \frac{2}{2a+3} முறை பெருக்கவும். \frac{2a+3}{2a+3}-ஐ \frac{1}{3-2a} முறை பெருக்கவும்.
\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}
\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} மற்றும் \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)}
2\left(-2a+3\right)-\left(2a+3\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)}
-4a+6-2a-3-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{-6a+3}{-4a^{2}+9}
\left(-2a+3\right)\left(2a+3\right)-ஐ விரிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)}-\frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். 2a+3 மற்றும் 3-2a-க்கு இடையிலான மீச்சிறு பெருக்கி \left(-2a+3\right)\left(2a+3\right) ஆகும். \frac{-2a+3}{-2a+3}-ஐ \frac{2}{2a+3} முறை பெருக்கவும். \frac{2a+3}{2a+3}-ஐ \frac{1}{3-2a} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(-2a+3\right)-\left(2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)})
\frac{2\left(-2a+3\right)}{\left(-2a+3\right)\left(2a+3\right)} மற்றும் \frac{2a+3}{\left(-2a+3\right)\left(2a+3\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-4a+6-2a-3}{\left(-2a+3\right)\left(2a+3\right)})
2\left(-2a+3\right)-\left(2a+3\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{\left(-2a+3\right)\left(2a+3\right)})
-4a+6-2a-3-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}-6a+6a+9})
-2a+3-இன் ஒவ்வொரு கலத்தையும் 2a+3-இன் ஒவ்வொரு கலத்தால் பெருக்குவதன் மூலம் பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a+3}{-4a^{2}+9})
-6a மற்றும் 6a-ஐ இணைத்தால், தீர்வு 0.
\frac{\left(-4a^{2}+9\right)\frac{\mathrm{d}}{\mathrm{d}a}(-6a^{1}+3)-\left(-6a^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}a}(-4a^{2}+9)}{\left(-4a^{2}+9\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{1-1}-\left(-6a^{1}+3\right)\times 2\left(-4\right)a^{2-1}}{\left(-4a^{2}+9\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(-4a^{2}+9\right)\left(-6\right)a^{0}-\left(-6a^{1}+3\right)\left(-8\right)a^{1}}{\left(-4a^{2}+9\right)^{2}}
எண்கணிதத்தைச் செய்யவும்.
\frac{-4a^{2}\left(-6\right)a^{0}+9\left(-6\right)a^{0}-\left(-6a^{1}\left(-8\right)a^{1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
பங்கீட்டுக் குணத்தைப் பயன்படுத்தி விரிக்கவும்.
\frac{-4\left(-6\right)a^{2}+9\left(-6\right)a^{0}-\left(-6\left(-8\right)a^{1+1}+3\left(-8\right)a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{24a^{2}-54a^{0}-\left(48a^{2}-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
எண்கணிதத்தைச் செய்யவும்.
\frac{24a^{2}-54a^{0}-48a^{2}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
தேவையற்ற அடைப்புக்குறிகளை அகற்றவும்.
\frac{\left(24-48\right)a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{-24a^{2}-54a^{0}-\left(-24a^{1}\right)}{\left(-4a^{2}+9\right)^{2}}
24–இலிருந்து 48–ஐக் கழிக்கவும்.
\frac{-24a^{2}-54a^{0}-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{-24a^{2}-54-\left(-24a\right)}{\left(-4a^{2}+9\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}